The Ecological Forecasting Initiative Bibliography Zotero Group library has an extensive list of citations.  You can use the Filter Tags section in the lower left-hand corner of this library to search for papers provided on our EFI Diversity and Inclusion webpage tagged “EFI DEI Paper“, papers posted to the Slack #papers channel tagged “EFI Slack Paper“, and papers relating to EFI activities tagged “EFI Publication“.

The Ecological Forecasting Initiative has partnered with the MDPI Forecasting, an open-access journal, on a special issue focusing on near term ecological forecasting. The deadline for submissions to the special issue is March 1, 2022. Find further details HERE.

The following publications are categorized as:
EFI Publications, Concept Papers, Methods Papers, Decision Support, and Case Studies

EFI publications

Peters, JA. and R.Q. Thomas. 2021. Going virtual: What we learned from the Ecological Forecasting Initiative Research Coordination Network Virtual Workshop. Bulletin of the Ecological Society of America.

Meyers, M.F., et al. 2021. Virtual Growing Pains: Initial Lessons Learned from Organizing Virtual Workshp, Summits, Conferences, and Networking Events during a Global Pandemic. Limnology and Oceanography Bulletin.

Pennisi, E. 2019. An ecologist with an eye toward forecasting the future. ScienceInsider Interview.

Dietze, M. and H. Lynch. 2019. Forecasting a bright future for ecology. Frontiers in Ecology and the Environment.

Dietze, M. C., et al. 2018. Iterative near-term ecological forecasting: Needs, opportunities, and challenges. Proceedings of the National Academy of Sciences 115(7): 1424-1432.

Dietze, M. C., et al. 2017. NEON workshop report: Iterative near-term ecological forecasting: Needs, opportunities, and challenges. pp 72. doi:10.6084/m9.figshare.4715317

Concepts papers

Clark, J. S., et al. 2001. Ecological Forecasts: An Emerging Imperative. Science, 293: 657–60. DOI: 10.1126/science.293.5530.657

Currie, D.J. 2018. Where Newton might have taken Ecology. Global Ecology and Biogeography, 28: 18-27.

Dietze M. C. 2017. Ecological Forecasting. Princeton University Press. 288 pp. ISBN 9781400885459

Dietze, M. C. 2017. Prediction in ecology: a first-principles framework. Ecological Applications, 27: 2048-2060.

Harris, D. J., S. D. Taylor, and E. P. White. 2018. Forecasting biodiversity in breeding birds using best practices. PeerJ 6:e4278;

Houlahan J.E., et al. 2017. The priority of prediction in ecological understanding. Oikos 126: 1–7.

Luo, Y., T. F. Keenan, and M. Smith. 2014. Predictability of the Terrestrial Carbon Cycle. Global Change Biology, 21(5): 1737–51.

Luo, Y., et al. 2011. Ecological forecasting and data assimilation in a data-rich era. Ecological Applications, 21(5): 1429-1442.

MacCracken, M. 2001. Prediction versus Projection—Forecast versus Possibility. WeatherZine Guest Editorial, 26: 3–4.

Petchey, O. L., et al. 2015. The ecological forecast horizon, and examples of its uses and determinants. Ecology Letters, 18: 597-611.

Shuman, F.G. 1989. History of numerical weather prediction at the National Meteorological Center. Weather Forecast, 4:286–296.;2

Weng, E., and Y. Luo. 2011. Relative Information Contributions of Model vs. Data to Short- and Long-Term Forecasts of Forest Carbon Dynamics. Ecological Applications, 21: 1490–1505.

Methods Papers

Clark, J. S. 2005. Why Environmental Scientists Are Becoming Bayesians. Ecology Letters, 8: 2–14.

Conn, P. B., et al. 2018. A Guide to Bayesian Model Checking for Ecologists. Ecological Monographs.

Dormann, C. F., et al. 2018. Model averaging in ecology: a review of Bayesian, information‐theoretic and tactical approaches for predictive inference. Ecological Monographs, 88(4); 485-504.

Doucet, A., and A. M. Johansen. 2011. A tutorial on particle filtering and smoothing: fifteen years later. In D. Crisan & B. Rozovskii (Eds.), The Oxford Handbook of Nonlinear Filtering (Vol. 12, pp. 656–704). Oxford University Press.

Evensen, G. 2009b. The Ensemble Kalman Filter for Combined State and Parameter Estimation. IEEE Control Syst. Mag., 29 (3): 83–104.

Hooten, M., and N. T. Hobbs. 2015. A guide to Bayesian model selection for ecologists. Ecological Monographs, 85:3–28.

Hyndman, RJ and G. Athanasopoulos. 2018. Forecasting: principles and practice. OTexts, 2nd edition, 382 pp. ISBN 978-0987507112

Medlyn, B. E., et al. 2015. Using ecosystem experiments to improve vegetation models. Nature Climate Change, 5(6): 528–534.

van Oijen, M. 2017. Bayesian methods for quantifying and reducing uncertainty and error in forest models. Current Forestry Reports, 3(4): 269–280.

Wikle, C., and L. Berliner. 2007. A Bayesian tutorial for data assimilation. Physica D: Nonlinear Phenomena, 230(1–2): 1-16.

Decision Support

Bradford, J. B., et al. 2018. Anticipitory natural resource science and management for a dynamic future. Frontiers in Ecology and the Environment.

Gregory, R., et al. 2012. Structured Decision Making: A Practical Guide to Environmental Management Choices. Wiley-Blackwell. 312 pp. ISBN: 978-1-444-33341-1

Hobday, A.J., et al. 2019. Ethical considerations and unanticipated consequences associated with ecological forecasting for marine resources. ICES Journal of Marine Science.

Ketz, A. C., et al. 2016. Informing management with monitoring data: the value of Bayesian forecasting. Ecosphere, 7(11): 01587.

Milly, P.C.D., et al. 2008. Stationarity Is Dead: Whither Water Management? Science, 319: 573–74. DOI: 10.1126/science.1151915

Morgan, M. G. 2014. Use (and Abuse) of Expert Elicitation in Support of Decision Making for Public Policy. Proceedings of the National Academy of  Science, U.S.A., 111: 7176–84.

Williams, P. J., and M. B. Hooten. 2016. Combining statistical inference and decisions in ecology. Ecological Applications, 26:1930–1942.

Case Studies

Howell, P. E., B. R. Hossack, E. Muths, B. H. Sigafus, A. Chenevert-Steffler, and R. B. Chandler. 2019. A statistical forecasting approach to metapopulation viability analysis. Ecological Applications 30:e02038. *Received 2020 Ecological Forecasting Oustanding Publication Award

Chen, Y., et al. 2011. Forecasting Fire Season Severity in South America Using Sea Surface Temperature Anomalies. Science, 334: 787–791.

Hardegree, S.P., J.T. Abatzoglou, M.W. Brunson, M.J. Germino, K.C. Hegewisch, C.A. Moffte, D.S. Pilliod, B.A.Roundy, A.R. Boehm, G.R. Meredith. 2018. Weather-centric rangeland revegetation planning. Randeland Ecology & Management, 71(1): 1-11.

Hobbs N.T., et al. 2015. State-space modeling to support management of brucellosis in the Yellowstone bison population. Ecological Monographs, 85:525–556.

Ibanez, I., et al. 2014. Integrated assessment of biological invasions. Ecological Applications, 24(1): 25–37.

Kuikka, S., J. Vanhatalo, and H. Pulkkinen. 2014. Experiences in Bayesian Inference in Baltic Salmon Management. Statistical Science, 29(1): 42–49.

LaDeau, S. L., et al. 2011. Data-Model Fusion to Better Understand Emerging Pathogens and Improve Infectious Disease Forecasting. Ecological Applications, 21: 1443–60.

Ong, J.B.S., et al. 2010. Real-time Epidemic Monitoring and Forecasting of H1N1-2009 Using Influenza-like Illness from General Practice and Family Doctor Clinics in Singapore. PLoS One, 5: e10036.

Paniw, M. et al. 2019. Life history responses of meerkats to seasonal changes in extreme environments. Science, 363(6427): 631-635. DOI: 10.1126/science.aau5905 *Received 2019 Ecological Forecasting Oustanding Publication Award

Scales, K. L.,  et al. 2017. Fit to predict? Eco-informatics for predicting the catchability of a pelagic fish in near real time. Ecological Applications, 27(8): 2313–2329.

Thomas, R. Q., et al. 2017. Leveraging 35 years of Pinus taeda research in the southeastern US to constrain forest carbon cycle predictions: regional data assimilation using ecosystem experiments. Biogeosciences 14: 3525–3547.
*Received 2018 Ecological Forecasting Oustanding Publication Award

Tredennick, A. T., et al. 2016. Forecasting climate change impacts on plant populations over large spatial extents. Ecosphere, 7(10): e01525.