Publications

The Ecological Forecasting Initiative Bibliography Zotero Group library has an extensive list of citations.  You can use the Filter Tags section in the lower left-hand corner of this library to search for papers provided on our EFI Diversity and Inclusion webpage tagged “EFI DEI Paper“, papers posted to the Slack #papers channel tagged “EFI Slack Paper“, and papers relating to EFI activities tagged “EFI Publication“.

The Ecological Forecasting Initiative has partnered with the MDPI Forecasting, an open-access journal, on a special issue focusing on near term ecological forecasting. The deadline for submissions to the special issue is March 1, 2022. Find further details HERE.

The following publications are categorized as:
EFI Publications, Concept Papers, Methods Papers, Decision Support, and Case Studies

EFI publications

Peters, JA. and R.Q. Thomas. 2021. Going virtual: What we learned from the Ecological Forecasting Initiative Research Coordination Network Virtual Workshop. Bulletin of the Ecological Society of America. https://doi.org/10.1002/bes2.1828

Meyers, M.F., et al. 2021. Virtual Growing Pains: Initial Lessons Learned from Organizing Virtual Workshp, Summits, Conferences, and Networking Events during a Global Pandemic. Limnology and Oceanography Bulletin. https://doi.org/10.1002/lob.10431

Pennisi, E. 2019. An ecologist with an eye toward forecasting the future. ScienceInsider Interview.

Dietze, M. and H. Lynch. 2019. Forecasting a bright future for ecology. Frontiers in Ecology and the Environment. https://doi.org/10.1002/fee.1994

Dietze, M. C., et al. 2018. Iterative near-term ecological forecasting: Needs, opportunities, and challenges. Proceedings of the National Academy of Sciences 115(7): 1424-1432. https://doi.org/10.1073/pnas.1710231115

Dietze, M. C., et al. 2017. NEON workshop report: Iterative near-term ecological forecasting: Needs, opportunities, and challenges. pp 72. doi:10.6084/m9.figshare.4715317

Concepts papers

Clark, J. S., et al. 2001. Ecological Forecasts: An Emerging Imperative. Science, 293: 657–60. DOI: 10.1126/science.293.5530.657

Currie, D.J. 2018. Where Newton might have taken Ecology. Global Ecology and Biogeography, 28: 18-27. https://doi.org/10.1111/geb.12842

Dietze M. C. 2017. Ecological Forecasting. Princeton University Press. 288 pp. ISBN 9781400885459

Dietze, M. C. 2017. Prediction in ecology: a first-principles framework. Ecological Applications, 27: 2048-2060. https://doi.org/10.1002/eap.1589

Harris, D. J., S. D. Taylor, and E. P. White. 2018. Forecasting biodiversity in breeding birds using best practices. PeerJ 6:e4278; https://doi.org/10.7717/peerj.4278

Houlahan J.E., et al. 2017. The priority of prediction in ecological understanding. Oikos 126: 1–7. https://doi.org/10.1111/oik.03726

Luo, Y., T. F. Keenan, and M. Smith. 2014. Predictability of the Terrestrial Carbon Cycle. Global Change Biology, 21(5): 1737–51. https://doi.org/10.1111/gcb.12766

Luo, Y., et al. 2011. Ecological forecasting and data assimilation in a data-rich era. Ecological Applications, 21(5): 1429-1442. https://doi.org/10.1890/09-1275.1

MacCracken, M. 2001. Prediction versus Projection—Forecast versus Possibility. WeatherZine Guest Editorial, 26: 3–4.

Petchey, O. L., et al. 2015. The ecological forecast horizon, and examples of its uses and determinants. Ecology Letters, 18: 597-611. https://doi.org/10.1111/ele.12443

Shuman, F.G. 1989. History of numerical weather prediction at the National Meteorological Center. Weather Forecast, 4:286–296. https://doi.org/10.1175/1520-0434(1989)004%3C0286:HONWPA%3E2.0.CO;2

Weng, E., and Y. Luo. 2011. Relative Information Contributions of Model vs. Data to Short- and Long-Term Forecasts of Forest Carbon Dynamics. Ecological Applications, 21: 1490–1505. https://doi.org/10.1890/09-1394.1

Methods Papers

Clark, J. S. 2005. Why Environmental Scientists Are Becoming Bayesians. Ecology Letters, 8: 2–14. https://doi.org/10.1111/j.1461-0248.2004.00702.x

Conn, P. B., et al. 2018. A Guide to Bayesian Model Checking for Ecologists. Ecological Monographs. http://doi.org/doi:10.1002/ecm.1314

Dormann, C. F., et al. 2018. Model averaging in ecology: a review of Bayesian, information‐theoretic and tactical approaches for predictive inference. Ecological Monographs, 88(4); 485-504. https://doi.org/10.1002/ecm.1309

Doucet, A., and A. M. Johansen. 2011. A tutorial on particle filtering and smoothing: fifteen years later. In D. Crisan & B. Rozovskii (Eds.), The Oxford Handbook of Nonlinear Filtering (Vol. 12, pp. 656–704). Oxford University Press. https://www.seas.harvard.edu/courses/cs281/papers/doucet-johansen.pdf

Evensen, G. 2009b. The Ensemble Kalman Filter for Combined State and Parameter Estimation. IEEE Control Syst. Mag., 29 (3): 83–104.

Hooten, M., and N. T. Hobbs. 2015. A guide to Bayesian model selection for ecologists. Ecological Monographs, 85:3–28. https://doi.org/10.1890/14-0661.1

Hyndman, RJ and G. Athanasopoulos. 2018. Forecasting: principles and practice. OTexts, 2nd edition, 382 pp. ISBN 978-0987507112

Medlyn, B. E., et al. 2015. Using ecosystem experiments to improve vegetation models. Nature Climate Change, 5(6): 528–534. http://doi.org/10.1038/nclimate2621

van Oijen, M. 2017. Bayesian methods for quantifying and reducing uncertainty and error in forest models. Current Forestry Reports, 3(4): 269–280. http://doi.org/10.1007/s40725-017-0069-9

Wikle, C., and L. Berliner. 2007. A Bayesian tutorial for data assimilation. Physica D: Nonlinear Phenomena, 230(1–2): 1-16. http://doi.org/10.1016/j.physd.2006.09.017

Decision Support

Bradford, J. B., et al. 2018. Anticipitory natural resource science and management for a dynamic future. Frontiers in Ecology and the Environment. http://doi.org/10.1002/fee.1806

Gregory, R., et al. 2012. Structured Decision Making: A Practical Guide to Environmental Management Choices. Wiley-Blackwell. 312 pp. ISBN: 978-1-444-33341-1

Hobday, A.J., et al. 2019. Ethical considerations and unanticipated consequences associated with ecological forecasting for marine resources. ICES Journal of Marine Science. https://doi.org/10.1093/icesjms/fsy210

Ketz, A. C., et al. 2016. Informing management with monitoring data: the value of Bayesian forecasting. Ecosphere, 7(11): 01587. http://doi.org/10.1002/ecs2.1587

Milly, P.C.D., et al. 2008. Stationarity Is Dead: Whither Water Management? Science, 319: 573–74. DOI: 10.1126/science.1151915

Morgan, M. G. 2014. Use (and Abuse) of Expert Elicitation in Support of Decision Making for Public Policy. Proceedings of the National Academy of  Science, U.S.A., 111: 7176–84. https://doi.org/10.1073/pnas.1319946111

Williams, P. J., and M. B. Hooten. 2016. Combining statistical inference and decisions in ecology. Ecological Applications, 26:1930–1942. https://doi.org/10.1890/15-1593.1

Case Studies

Howell, P. E., B. R. Hossack, E. Muths, B. H. Sigafus, A. Chenevert-Steffler, and R. B. Chandler. 2019. A statistical forecasting approach to metapopulation viability analysis. Ecological Applications 30:e02038. *Received 2020 Ecological Forecasting Oustanding Publication Award

Chen, Y., et al. 2011. Forecasting Fire Season Severity in South America Using Sea Surface Temperature Anomalies. Science, 334: 787–791. http://doi.org/10.1126/science.1209472

Hardegree, S.P., J.T. Abatzoglou, M.W. Brunson, M.J. Germino, K.C. Hegewisch, C.A. Moffte, D.S. Pilliod, B.A.Roundy, A.R. Boehm, G.R. Meredith. 2018. Weather-centric rangeland revegetation planning. Randeland Ecology & Management, 71(1): 1-11. https://doi.org/10.1016/j.rama.2017.07.003

Hobbs N.T., et al. 2015. State-space modeling to support management of brucellosis in the Yellowstone bison population. Ecological Monographs, 85:525–556. https://doi.org/10.1890/14-1413.1

Ibanez, I., et al. 2014. Integrated assessment of biological invasions. Ecological Applications, 24(1): 25–37. https://doi.org/10.1890/13-0776.1

Kuikka, S., J. Vanhatalo, and H. Pulkkinen. 2014. Experiences in Bayesian Inference in Baltic Salmon Management. Statistical Science, 29(1): 42–49. http://dx.doi.org/10.1214/13-STS431

LaDeau, S. L., et al. 2011. Data-Model Fusion to Better Understand Emerging Pathogens and Improve Infectious Disease Forecasting. Ecological Applications, 21: 1443–60. https://doi-org.proxy.library.nd.edu/10.1890/09-1409.1

Ong, J.B.S., et al. 2010. Real-time Epidemic Monitoring and Forecasting of H1N1-2009 Using Influenza-like Illness from General Practice and Family Doctor Clinics in Singapore. PLoS One, 5: e10036. https://doi.org/10.1371/journal.pone.0010036

Paniw, M. et al. 2019. Life history responses of meerkats to seasonal changes in extreme environments. Science, 363(6427): 631-635. DOI: 10.1126/science.aau5905 *Received 2019 Ecological Forecasting Oustanding Publication Award

Scales, K. L.,  et al. 2017. Fit to predict? Eco-informatics for predicting the catchability of a pelagic fish in near real time. Ecological Applications, 27(8): 2313–2329. http://doi.org/10.1002/eap.1610

Thomas, R. Q., et al. 2017. Leveraging 35 years of Pinus taeda research in the southeastern US to constrain forest carbon cycle predictions: regional data assimilation using ecosystem experiments. Biogeosciences 14: 3525–3547.
*Received 2018 Ecological Forecasting Oustanding Publication Award

Tredennick, A. T., et al. 2016. Forecasting climate change impacts on plant populations over large spatial extents. Ecosphere, 7(10): e01525. http://doi.org/10.1002/ecs2.1525