Data Assimilation 1: Analytical Methods

Lesson 9
FORECAST-ANALYSIS CYCLE

Predict the future using your current understanding of the system
- Model-based
- Error-propagation

Scientific method cycle

Update

Update prior understanding of the system based on new information

Current State
Future state
Observations
The Analysis Problem

• Prior to observing how the future plays out, what is our best estimate of the future state of the system, \(X_{t+1}\)?

• The forecast, \(P(X_{t+1})\)

• Once we make (imperfect) observations of the system, \(Y_t\), what’s our best estimate of \(X_t\)?

• \(P(X_{t+1}) = P(Y_{t+1})\) ?

• \(P(X_{t+1} | Y_{t+1}) \propto P(Y_{t+1} | X_{t+1}) P(X_{t+1})\)

\(\text{Prior} \quad \text{Likelihood} \quad \text{Posterior}\)
Simplest Analysis

- Forecast:
 Assume $P(X_{t+1}) \sim N(\mu_f, p_f)$

- Observation error:
 Assume $P(Y_{t+1} \mid X_{t+1}) \sim N(X_{t+1}, r)$

- Likelihood = Data model

- Assume Y, μ_f, p_f and r are known

- $P(X_{t+1} \mid Y_{t+1}) \sim N(\mu_a, p_a)$
 \[\rho = 1/r \quad \phi = 1/p_f \]

- $X \mid Y \sim N \left(\frac{\rho}{n\rho + \phi} n\bar{Y} + \frac{\phi}{n\rho + \phi} \mu_f, n\rho + \phi \right)$
Precision controls influence

Less Precise Data

Less Precise Model
Simplest Forecast

- Process Model
 \[X_{t+1} = mX_t + \varepsilon_t \]

- Process error
 \[\varepsilon_t \sim N(0,q) \]

- Assume \(m \) and \(q \) are known

- State uncertainty (IC)
 \[P(X_t \mid Y_t) \sim N(\mu_a,p_a) \]

- What is \(P(X_{t+1}) \)?

- \[E[X_{t+1}] = E[mX_t + \varepsilon_t] = m\mu_a \]

- \[\text{Var}[X_{t+1}] = \text{Var}[mX_t + \varepsilon_t] \]
 \[\approx m^2\text{Var}[X_t] + \text{Var}[\varepsilon_t] - 2\text{Cov}[mX_t,\varepsilon_t] \]

- \[\approx m^2\text{Var}[X_t] + \text{Var}[\varepsilon_t] \]

- \[m^2p_a + q \]

- \[P(X_{t+1}) \sim N(mX_t,m^2p_a + q) \]
Forecast Cycle

- **Forecast Step:**
 \[P(X_{t+1}) \sim N(\mu_f = mX_t, \quad p_f = m^2p_a + q) \]

- **Analysis Step**
 \[P(X_{t+1} \mid Y_{t+1}) \sim N(\mu_a, p_a) \]
 \[1/p_a = n/p_f + 1/r \]
 \[\mu_a = (\mu_f/p_f + nY/r) \cdot p_a \]

- Has an analytical solution!

- Kalman Filter

Rudolf Kalman
“Data assimilation isn’t rocket science, but you can use it for that.”

– DAVE MOORE
Generalized to Multivariate

- \((n \times 1)\) vector of state means, \(\mu_a\) or \(\mu_f\)
- \((n \times n)\) state error covariance matrix, \(P_a\) or \(P_f\) (was \(p_a, p_f\))
- \((p \times 1)\) vector of observations, \(Y\)
- \((p \times p)\) observation error covariance matrix, \(R\) (was \(r\))
- \((p \times n)\) observation matrix, \(H\)
- \((n \times n)\) linear process model, \(M\) (was \(m\))
- \((n \times n)\) process error covariance matrix, \(Q\) (was \(q\))

\[
X_a | Y \sim N(Y | HX_a, R) \quad N(X_a | \mu_f, P_f)
\]
\[X_a|Y \sim N \left(Y|HX_a, R \right) N \left(X_a|\mu_f, P_f \right) \]

- Solves to be

\[
X_a|Y \sim N \left(\left(H^T R^{-1} H + P_f^{-1} \right)^{-1} \left(H^T R^{-1} Y + P_f^{-1} \mu_f \right), \left(H^T R^{-1} H + P_f^{-1} \right)^{-1} \right)
\]

\[P_a^{-1} = H^T R^{-1} H + P_f^{-1} \]
\[X_a | Y \sim N \left(Y | HX_a , R \right) N \left(X_a | \mu_f , P_f \right) \]

- Solves to be
\[X_a | Y \sim N \left((H^T R^{-1} H + P_f^{-1})^{-1} (H^T R^{-1} Y + P_f^{-1} \mu_f) , (H^T R^{-1} H + P_f^{-1})^{-1} \right) \]

- Mean and variance simplify to
\[E \left[X_a | Y \right] = \mu_a = \mu_f + K \left(Y - H \mu_f \right) \]
\[Var \left[X_a | Y \right] = P_a = \left(I - KH \right) P_f \]
\[K = P_{fH}^T \left(R + H P_f H^T \right)^{-1} \]
Kalman Gain
Example

- Assume $\mu_f = \{\mu_1, \mu_2, \mu_3\}$, $Y = \{y_2, y_3\}$, and observation error is $R = \sigma^2 I$

$$H = \begin{bmatrix} X_1 & X_2 & X_3 \end{bmatrix} \begin{bmatrix} Y_2 \\ Y_3 \end{bmatrix}$$

- The posterior mean for the unobserved X_1 is

$$E[x_1] = \mu_1 + w_{12}(y_2 - \mu_2) + w_{13}(y_3 - \mu_3)$$

$$w_1^T = (p_{12} \quad p_{13}) \begin{pmatrix} p_{22} + \sigma^2 & p_{23} \\ p_{32} & p_{33} + \sigma^2 \end{pmatrix}^{-1}$$

If X's are locations and P is a spatial covariance matrix, model is equivalent to Kriging.
Forecast Step \[X_{t+1} = MX_t + \epsilon \]

The posterior distribution of \(X_{t+1} \) given \(X_t \) is multivariate normal with

\[
\mu_{f,t+1} = E \left[X_{f,t+1} \mid X_{a,t} \right] = M_t \mu_{a,t}
\]

\[
P_{f,t+1} = Var \left[X_{f,t+1} \mid X_{a,t} \right] = Q_t + M_t P_{a,t-1} M_t^T
\]
Pro/Con of Kalman Filter (KF)

- Analytically tractable
- Depends only upon the PREVIOUS state, the current Forecast, and the current Data

- Linear
- Normal
- Matrix inversion
- Assumes all parameters (H, R, M, Q) are known
- Forward only
Uncertainty Propagation

Applied in the Forecast Step

<table>
<thead>
<tr>
<th>Approach</th>
<th>Distribution</th>
<th>Output Moments</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytic</td>
<td>Variable Transform</td>
<td>Analytical Moments</td>
<td>KF</td>
</tr>
<tr>
<td>Numeric</td>
<td>Monte Carlo</td>
<td>Taylor Series</td>
<td>EKF</td>
</tr>
<tr>
<td></td>
<td>PF</td>
<td>Ensemble</td>
<td>EnKF</td>
</tr>
</tbody>
</table>
Extended Kalman Filter (EKF)

- Addresses **linear** assumption of the Forecast

 - $\mu_f = f(\mu_a)$

- Update variance using a Taylor Series expansion

 - $F = \text{Jacobian } \left(\frac{df_i}{dx_j} \right)$

 - $P_f \approx Q + F \, P_a \, F^T$ \(\text{(was } Q + M \, P_a \, M^T)\)

- Can be extended to higher orders

- Jensen’s Inequality: Biased, Normality assumption FALSE
\[N_{t+1} = N_t + rN_t \left(1 + \frac{N}{K}\right) \]

\[\frac{\partial N_{t+1}}{\partial N_t} = 1 + r - \frac{2r}{K}N_t \]