Bayesian Models for
More Complex Data
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Recall: Regression

Regression modeling is concerned with describing how
the sampling distribution of one random variable

Y  response variable

varies with another variable or set of variables
r = (x1,...,%p) explanatory variable(s)
or “covariates”
Specifically, a regression model postulates a form for

p(y|x), the conditional distribution for Y™ given x

Estimation of p(y|x) is made using data 41, ..., Un
gathered under a variety of conditions x1,..., 2,
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Linear model

One simple but flexible approach to regression is via
the linear (sampling) model (LM)

The LM treats responses Y, as independent (but not
identically distributed) realizations of a process that is
linear in explanatory variables =, = (Tidy- s Tip),
observed with Gaussian noise

Y; ™ N(pi o) where p; = E{Y|z;} =]

where the x; are known, (3 is an unknown
p-dimensional parameter vector of regression
coefficients, and o2 is an unknown variance parameter



Compact notation
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Compact notation
The LM is usually written as Y = X 5 + ¢, where

Yi x| B €1

vl Q=] =] o=

Y, x! B En
iid 2
and {e1,...,e,} ~ N(0,0%)
Even more compact notation is design matrix

Y ~ Nn®,ln0'2)

where [ is a n X nidentity matrix



Linear model assumptions

The linear model rests on some important assumptions:

® Errors are additive and normally distributed

® Errors are homoskdastic (don't vary across Xs)

 Observations are independent (conditional on the
linear predictor)

® Linear (in covariates) mean function

® All error/randomness is in the value of the
response (i.e., the X values are precisely known)

® There is no (systematic) missing data



Linear model assumptions

The linear model rests on some important assumptions:

® Errors are additive and normally distributed

® Errors are homoskdastic (don't vary across Xs)

 Observations are independent (conditional on the
linear predictor)

® Linear (in covariates) mean function

® All error/randomness is in the value of the
response (i.e., the X values are precisely known)

® There is no (systematic) missing data

Ecological data rarely conform to these assumptions!



Non-normal distributions

The most common deviation from these assumptions is
that data are non-normal, and especially are not
continuous:

e Binary Data (O or |)
® Sick or Healthy
® Yes or No

e Count data (l,2,3,4...)
e number of animals observed
e number of people ill



Example: Estimating the probability of a rare event

Suppose we are interested in the prevalence of an
infectious disease in a small city. A small random
sample of 20 individuals will be checked for infection.

* We want to estimate the fraction of infected
individuals in the population: § € © = [0, 1]

® The data records the number of infected
individuals: y € Y ={0,1,...,20}



Example: Likelihood/sampling model

Before the sample is obtained, the number of infected
individuals is unknown.

® |et Y denote this to-be-determined value

o [f 0 were known, a sensible sampling model is

Y60 ~ Bin(20, )
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Example: Prior

Other studies from various parts of the country
indicate that the infection rate ranges from about
0.05 to 0.20 with an average prevalence of 0.1

® Moment matching from a beta distribution (a
convenient choice, as we'll see) give the prior:

0 ~ Beta(2,20)

0.0 0.2 0.4 0.6 0.8 1.0



Example: Posterior

The prior and sample model combination:

0 ~ Beta(a,b)
Y0 ~ Bin(n, )

With observed data y, we can obtain an analytic
expression for the posterior:

p(fly) = Beta(a +y,0 +n —y)



Example: Posterior

The prior and sample model combination:

0 ~ Beta(a,b)
Y0 ~ Bin(n, )

With observed data y, we can obtain an analytic
expression for the posterior:

p(fly) = Beta(a +y,0 +n —y)

This is an example of a conjugate Bayesian model.



Example: Posterior

For our case,we have a = 2, b = 20, n = 20
If we don't find any infections (y = 0)our posterior is

p(Aly = 0) = Beta(2, 40)
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Example: Prior Sensitivity

How influential is our prior?

The posterior expectation can be written as

Tl B w
E{0]Y =y} = ey w+n90

a weighted average of the sample mean and prior
expectation:

a prior expectation
Oy = ’ (or guess)

a-+0b

w=a-+b ﬁ

prior confidence/
sample size



Example: Song sparrow reproductive success

Arcese et al., (1992) provide data on a sample from a
population of 52 female song sparrows studied over
the course of a summer, during which their
reproductive activities were recorded
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Example: Song sparrow reproductive success

Arcese et al., (1992) provide data on a sample from a
population of 52 female song sparrows studied over
the course of a summer, during which their
reproductive activities were recorded
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2-year-old birds had the highest median reproductive

success, declining thereafter
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Example: Typical biology

This is not surprising from a biological point of view:

* |-year-old birds are in their first mating season
and are relatively inexperienced compared to

two-year-old birds
* As birds age beyond two years they experience
a general decline in health and activity

We wish to fit a probability model to these data

* perhaps to understand the relationship between
age and reproductive success
* or to make population forecasts for this group

of birds
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Example: Poisson model

Since the number of offspring for each bird is a non-
negative integer {0, 1,2, ... },a simple probability
model for

Y = the number of ofispring

conditional on x = age
would be a Poisson model

{Y|x} ~ Pois(6,)

One possibility would be to estimate 0, separately for
each age group
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Example: Adding stability

However, the number of birds of each age is small and
so the estimates of 6, would be imprecise

To add stability to the estimation we will assume that
the mean number of offspring is a smooth function of

age

We will want to allow this function to be quadratic so
that we can represent

* the increase in mean offspring while birds mature
* and the decline they experience thereafter
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Example: A linear model?
One possibility would be to express 6, as

0, = B + oz + B3x”

However, this might allow some values of 6 to be
negative, which is not physically possible

As an alternative, we will model the log-mean of Y in
terms of this regression so that

log B{Y |z} = log 0, = 81 + fax + [3a°

which means that, for all x and

{Y |z} = exp{f1 + Boz + 327} > 0
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Poisson regression

The resulting model

{Y]x} ~ Pois(exp{atTﬁ})

is called a Poisson regression model, or log-linear
mode]

The term xTﬁ is called the linear predictor

In the regression model the linear predictor is linked

to

©{Y |x} via the log function, and so we say that

this model has a log link
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Generalized linear model

The Poisson regression/log-linear model is a type of
generalized linear model (GLM), a model which

* allows more general response distributions for Y

than the normal distribution

* relates a function of the expectatlon U =

Y}

to a linear predictor ) = X 5 through the link

g(p) =n

These two choices define the GLM
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Example: Prior specification

Unlike the normal or Beta-Binomial models, there is
not a conjugate (or semi-conjugate) prior for the
Poisson regression model.

So we can choose what we'd like! Since the coefficients
of the linear predictors can be anywhere along the real
line, but we don't want to force them to be any
particular value, | choose:

Bo, B1, B2 ~ N(0,1007)

Then turn the Bayesian crank...
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Linear model assumptions

The linear model rests on some important assumptions:

® Errors are additive and nrermally-distributed-

® Errors are homoskdastic (don't vary across Xs)

 Observations are independent (conditional on the
linear predictor)

® Linear (in covariates) mean function

® All error/randomness is in the value of the
response (i.e., the X values are precisely known)

® There is no (systematic) missing data



Linear model assumptions

The linear model rests on some important assumptions:

® Errors are additive and nrermally-distributed-

® Errors are homoskdastic (don't vary across Xs)

 Observations are independent (conditional on the
linear predictor)

® Linear (in covariates) mean function

® All error/randomness is in the value of the
response (i.e., the X values are precisely known)

® There is no (systematic) missing data

How can relax some of these other assumptions!?



