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To put it crudely, speaking or writing is a box whose
input is a meaning plus a communicative intent, and
whose output is a string of words; comprehension is a
box with the opposite information flow. What is
essentially wrong with this perspective is that it
assumes that meaning and intent are inextricably linked.
Their separation, the learning scientist Phil Zuckerman
has argued, 1s an 1llusion that we have built into our
brains, a false sense of coherence.
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What do we need for ecological forecasting?

1. Produce accurate predictions

2. Characterize prediction uncertainty
3. Make use of recent observations

4. Improve ecological understanding

Machine learning models are another tool in our arsenal



Model components are designed...or discovered

Calibration, Fitting, Inverse Modeling

Machine Learning

Parameters :
Observations

Equations

Machine Learning
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Deep Learning
Overview: Artificial Neural Networks

Advantages: i l
* Models dynamic, non-linear and noisy WX
75°F -~ ~ <
data \k
* Low computational cost of predicting - il Sutout
. 12 s - S
* Can be applied to many types of Layer(s) " ».jx,._, Layer
problems ‘ i
31cm -t — <Y\ N
Disadvantage: N F \
e Can yield instable outputs
e Slow convergence speed
° Hyperparameter tuning can Fully Connected Hidden Layers

be difficult
Artificial Neural Networks (ANN)

Basic

Appling et al. In Press; Cruz et al. 2021



Deep Learning
Overview: Recurrent Neural Networks

Advantages: - Outout
° npu 2cm 10cm 9cn
* Captures temporal dependencies over Layer © Fﬂe;:)tmes
variable time periods ! . -
Disadvantage: o | e St St
* Higher complexity and Cell [SPTVENEREN I —— S

computational cost

Time 0O Time 1 Time 2

Recurrent Neural Networks (RNN)

, Time-Aware
Appling et al. In Press; Cruz et al. 2021



Deep Learning
Overview: Convolutional Neural Networks

Advantages:
* Captures spatial relationships
* Small number of trainable weights

. Input
Disadvantage: ;

Layer
 Difficult to capture long-term
dependencies

Output
Layer

Filters within Fully Connected Hidden Layers

Convolutional Neural Networks (CNN)

Space-Aware
Appling et al. In Review; Cruz et al. 2021



Deep Learning
Example: Stream temperature prediction

Precipitation Air temperature

https://labs-
beta.waterdata.usgs.gov/visualizati
ons/temperature-
prediction/index.html#/modeling

USGS WMA Data Science Branch


https://labs-beta.waterdata.usgs.gov/visualizations/temperature-prediction/index.html#/modeling

What do we need for ecological forecasting?

1. Produce accurate predictions



Woater Resources Research

What Role Does Hydrological Science Play in the Age
of Machine Learning?

COMMENTARY
10.1029/2020WR028091

Special Section:
Big Data & Machine Learning
1in Water Sciences: Recent
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Nearing et al. 2020
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Daniel Klotz*
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Woater Resources Research

COMMENTARY
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Special Section:
Big Data & Machine Learning
1in Water Sciences: Recent
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What Role Does Hydrological Science Play in the Age
of Machine Learning?

Grey S. Nearing' (", Frederik Kratzert® ('), Alden Keefe Sampson’ (", Craig S. Pelissier”,
Daniel Klotz” (", Jonathan M. Frame' (>, Cristina Prieto’ (2, and Hoshin V. Gupnta'5

(b) EA-LSTM

Kratzert et al. 2019

t-1 t t+1
clt-11 — ¥ » c[t]
(+)
¥
@ tanh
h[t-1] r @ O ——= h[t]
x[t] x®



185,549 lakes
| with data fov 1980 - 2020

LIMNOLOGY AND OCEANOGRAPHY ASLQ
LETTERS

Data Article () Open Access @ @

Daily surface temperatures for 185,549 lakes in the
conterminous United States estimated using deep learning
(1980-2020)

Jared D. Willard &, Jordan S. Read, Simon Topp, Gretchen J. A. Hansen, Vipin Kumar

o
vuild model

|

EA-LSTM observed surface temp
\ / pveo!\i - Lrom 12,237 lakes

compare compare

to other mo\els\_. continuous surface temp Yo cbservations

ERAS5/FLake LM



ML model most accurate

for 185,000+ lakes

LIMNOLOGY AND OCEANOGRAPHY

LETTERS

&) Open Access @ @

Data Article

Daily surface temperatures for 185,549 lakes in the

gsi:!L='==P

Open Access

conterminous United States estimated using deep learning

(1980-2020)

Jared D. Willard 3%, Jordan S. Read, Simon Topp, Gretchen J. A. Hansen, Vipin Kumar
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POLICYFORUM
BIG DATA
The Pa ra b I e Of G Oog I e FI u: Large errors in flu prediction were largely
- - - avoifiable, which offers lessons for the use
Traps in Big Data Analysis of bigdta.
David Lazer,"?* Ryan Kennedy,"** Gary King,® Alessandro Vespignani®®3 10 = Google Flu Lagged DC
Google Flu + (DC  ——— (DC
8 :
Google estimates more
than double CDC estimates
=N
=3
4 —
2 —
* Overfit to few data 0 . . . .
. 07/01/09 07/01/10 07/01/11 07/01/12 07/01/13
points _—y

Google starts estimating
high 100 out of 108 weeks

Google Flu Lagged CDC
Google Flu + CDC

* Not accounting for
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ECOBOGE]L ELLERS

Method @ Full Access

Neural hierarchical models of ecological populations

Maxwell B. Joseph 24

e Use neural networks to
parameterize a species
occupancy model

* Model structure is pre-
defined
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Pk forzlakesand-streamntemperdtures

Feature
selection &
engineering

Process-based
model outputs

Preliminary information — subject to revision. Not for citation or distribution.

% M !
/ . = Output Training® Process-based
XA re model outputs
<<= architecture or — . .
B Process-based

Process-relevant
loss function

Hidden Layer(s)

" Process-relevant Layer  Data

model residuals

Concepts expanded from Willard et al. preprint
Figure by Ellen Bechtel, modified from Appling et al. in Press



PGDL for lake and stream temperatures

e Structural awareness of time

(LSTM; lakes and streams) o
ayer
l . -
Rl - N A A A A A A
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Output . . .
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Figure by Ellen Bechtel, modified from Appling et al. in Press
Streams: Jia et al., in review & arXiv 2020; Sadler et al., in prep
Lakes: Karpatne et al. arXiv 2017, Jia et al., Proc. SIAM, 2019, Read et al. WRR, 2019



PGDL for lake and stream temperatures

 Structural awareness of time River network Adjacency matrix

Distance

(LSTM; both) and space (GCNN; k (km)  Weight
10 Low

streams) . .

Aﬂ)\f 2 6

4

e 2
\C 0 High

Graph figures: inspired by Jeff Sadler’s
Streams: Jia et al., in review & arXiv 2020; Sadler et al., in prep
Lakes: Karpatne et al. arXiv 2017; Jia et al., Proc. SIAM, 2019; Read et al. WRR, 2019



PGDL for lake and stream temperatures

e Structural awareness of time o
(LSTM; both) and space (GCNN; il R

radiation Incoming

lar (short
streams) incoming s

advected
energy

Outgoing
latent heat Qutgoing
(evaporation) sensible
heat  Outgoing
advected
energy

* Custom loss function: energy
balance (lakes)

Energy balance figure: Hayley Corson-Dosch

Streams: Jia et al., in review & arXiv 2020; Sadler et al., in prep
Lakes: Karpatne et al. arXiv 2017, Jia et al., Proc. SIAM, 2019, Read et al. WRR, 2019



PGDL for lake and stream temperatures

e Structural awareness of time w

(LSTM; both) and space (GCNN; b 3
streams) )

 Custom loss function: energy b x & BB

balance (lakes), heat & flow info Toutt s

shared downstream (streams) & |
H x a e
Qout,t

Qin,t+1

Energy balance figure: Hayley Corson-Dosch

Streams: Jia et al., in review & arXiv 2020; Sadler et al., in prep
Lakes: Karpatne et al. arXiv 2017, Jia et al., Proc. SIAM, 2019, Read et al. WRR, 2019



PGDL for lake and stream temperatures

Structural awareness of time
(LSTM; both) and space (GCNN;
streams)

Custom loss function: energy
balance (lakes), heat & flow info
shared downstream (streams)

Pretraining on process model
outputs (both)

" Nov ' Dec Jan

Streams: Jia et al., in review & arXiv 2020; Sadler et al., in prep
Lakes: Karpatne et al. arXiv 2017, Jia et al., Proc. SIAM, 2019, Read et al. WRR, 2019



Theory vs. ML depends on data abundance

More 1 -

Accurate

Lake Temperature
Test RMSE (°C)

4 -

Less
Accurate

w
I

m}

.

\

10 50 100

Training temperature profiles (#)

500 980

=

When given enough data, Deep
Learning methods can beat
process-based models

Process-Based models can be

applied with more confidence to
data-poor regions

Adapted from Read et al. 2019



PGDL rises above theory and data

More 1 - ¢___<>_____...<>--<>F e Process-Guided Deep Learning
Accurate performance was superior at all
jg? data densities
2 o

When given enough data,
methods can beat
process-based models

Lake Temperature
Test RMSE (°C)
w

o Process-Based models can be
applied with more confidence to

4 :
data-poor regions

Less
Accurate

2 10 50 100 500 980

Training temperature profiles (#) Adapted from Read et al. 2019



PGDL for abundant data: vanishing returns?

?
More 1. DN 0% ? e Process-Guided DL
Accurate - e Deep Learning
| # L ¢ ? e Process-Based

N
_O_

Lake Temperature
Test RMSE (°C)

3 _
4
Less
Accurate
2 10 50 100 500 980

Training temperature profiles (#) Adaptedfrom Read et al. 2019

Preliminary information — subject to revision. Not for citation or distribution.



Predictability regimes

: Deep learning
| — Process-guided deep learning
l
l
u>f I Process-based modeling
o
>
O l
O
< l
l
l
l
' —

Theory > Data Data > Theory Data >> Theory

Preliminary information — subject to revision. Not for citation or distribution. Fig ure fme A/iSOn Appling



Predictability regimes

Deep learning

— Process-guided deep learning

— Process-based modeling

Accuracy

—>

? ?
Theory > Data Data > Theory Data >> Theory

Preliminary information — subject to revision. Not for citation or distribution. Fig ure fme A/iSOn Appling



What do we need for ecological forecasting?

2. Characterize prediction uncertainty



Uncertainty — Monte Carlo Dropout
(a)

 Randomly drops out portion of
network during training phase full network

« Used as a regularization scheme
to prevent overfitting

« When dropout used during (b) @
prediction, gives an estimate of _
model uncertainty network with
O dropped out

components (O)



Uncertainty — Mixture Density Networks
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Uncertainty — Mixture Density Networks

Predictions and weight behavior
Hydrograph of basin no. 14182500
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Uncertainty — Mixture Density Networks

Predictions and weight behavior
Hydrograph of basin no. 14182500
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Uncertainty —

Proportion of Obs in Confidence Interval

Mixture Density Networks

Reliability benchmark
(a) Probability plot (aggregation over time steps and basins)
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What do we need for ecological forecasting?

3. Make use of recent observations



' STM with Data Assimilation (ensemble

Kalman filter)

] | temperature L
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Zwart et al. 2021
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M with Data Assimilation (ensemble

Use sample
covariance to update
LSTM states
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Let the neural network figure it out

e Data integration kernels —
Near-Real-Time Forecast of Satellite-Based Soil Moisture Using Long Short-Term

use observations when Memory with an Adaptive Data Integration Kernel
available, prediCtiOnS KUAI FANG AND CHAOPENG SHEN
otherwise

Heterogeneous Stream-reservoir Graph Networks

* |nvertible neural networks _ R
with Data Assimilation

used to learn how to

u pd ate Ce” States from Shengyu Chen', Alison Appling®, Samantha Oliver”, Hayley Corson-Dosch”, Jordan Read?,

Jeffrey Sadler?, Jacob Zwart=, Xiaowei Jia!
observations

+ Autoregressive techniques Technical Note: Data assimilation and

outperform more autoregr.essm.n for using near-real-time streamflow
observations in long short-term memory networks

traditional data
Grey S. Nearing'-2, Daniel Klotz®?3, Alden Keefe Sampson{®?, Frederik Kratzert(®®, Martin Gauch(®?, Jonathan M. Frame®°®7,

aSSimilation tECh niq ues Guy Shalev, and Sella Nevo?®



What do we need for ecological forecasting?

4. Improve ecological understanding



ECOBOGE]L ELLERS

Method @ Full Access

Neural hierarchical models of ecological populations

Maxwell B. Joseph 24

e Use neural networks to
parameterize a species
occupancy model

* Model structure is pre-
defined
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Deep Learning Interpretability

400
—— 5Snow Water Equivalent (mm)
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LSTM cells learn to track snow in memory cells without requiring snow data for
training.

Can be applied for other difficult-to-observe states and fluxes (e.g. gas exchange,
population abundance, biomass)

Kratzert et al. 2019; Hoedt et al. 2021



Deep Learning
Interpretability

Expected gradient:

* Tells which drivers most
influence cell states or
model output

Nearing et al. 2020
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Expected Gradient Attribution (Baseline)

Deep Learning M(:jel‘l Vicdel
Interpretability s I

How are our models
capturing spatial
relationships?

Are those
relationships
physically realistic?

Figure from Simon
Topp, Jeremy Diaz,
and Lauren Koenig

Preliminary information — subject to revision. Not for citation or distribution.



Deep Learning
Forecast Interpretabillity

Mixture density networks + expected gradients =
variance partitioning of forecast inputs



Summary: machine learning is highly suitable
for ecological forecasting

1. Produce accurate predictions

2. Characterize prediction uncertainty
3. Make use of recent observations

4. Improve ecological understanding
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