

Assessing Model Performance

- Range of values
- Units
- General pattern in time & space Sanity check!

Step 1: Is the model output reasonable?

Step 2: Graphical comparisons to data

Accuracy of Prediction

Predicted Values

Identify Outliers

Assess Biases

Miscalibration

Dynamics & Drivers

Diagnosing a model is Hypothesis Testing Why would a model fail at low humidity?

What experiments would I run in the model to test this?

Focus on key assumptions

Medlyn et al NCC 2015

"data simulated under a model should look similar to data gathered in the real world." Conn et al 2018

IN THE FITTING, WE ASSUMED IID NORMAL ERRORS GPP

Does that seem like an adequate description of the data?

IN THIS FITTING, WE ASSUMED EXPONENTIAL ERRORS WITH NON-CONSTANT VARIANCE

GPP

Does that seem like an adequate description of the data?

PUBLISHED APR. 4, 2019, AT 7:00 AM

How Good Are FiveThirtyEight Forecasts?

MLB games, 2016-18

https://projects.fivethirtyeight.com/checking-our-work/

Bayesian p-value / prediction interval

- Posterior predictive distribution is the uncertainty of the "true" value
- Prediction interval is the expected variance of the observed values = PPD + error
 - Shows us what distribution we would expect for the data
- Bayesian p-value is when we use PPD + error to calculate the value of the cdf of the observed data
 - Distribution should be flat (uniform)
 - "Bayesian residuals"

_1

0

Step 3: Quantitative Skill Assessment

Error Statistics

Root Mean Square Error (RMSE)

$$\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - x_i)^2}$$

 Correlation (r)
 R²
 Regression slope
 (a) Low accuracy Low precision
 (b) Low accuracy High precision
 (c) High accuracy Low precision
 (d) High accuracy High precision

Proper: based on the metric used for calibration Local: depends on data that could actually be collected

Correlation

Normalized RMSE

Schaefer et al. 2012 JGR-B

Autocorrelation

Correlogram

Brier score

Contribution BS1 of one forecast to the total Brier Score

Continuous Ranked Probability Score

$$\operatorname{CRPS}(F, x) = -\int_{-\infty}^{\infty} (F(y) - \mathbb{1}\{y \ge x\})^2 \,\mathrm{d}y$$

$$CRPS(\hat{F}_m, y) = \frac{1}{m} \sum_{i=1}^{m} |X_i - y| - \frac{1}{2m^2} \sum_{i=1}^{m} \sum_{j=1}^{m} |X_i - X_j|$$

$$Mean Absolute$$

$$Penalty for$$

$$Error$$

ensemble spread

https://github.com/eco4cast/neon4cast-scoring/blob/main/₂₉ CRPS_example_JRT.Rmd

Data mining the residuals

- Wide variety of DataMining algorithms in use
- Potentially useful for
 generating hypothesis
 about when/where model
 fails
- "Correct" the forecast
- Hybrid models increasing

CART

GAM

- Random Forests
- Boosted regression trees
- Artificial Neural Network
- Support Vector Machines

