Data Assimilation 2: Monte Carlo Methods

"An approximate answer to the right problem is worth a good deal more than an exact answer to an approximate problem." John W. Tukey

Forecast Cycle

UNCERTAINTY PROPAGATION APPLIED IN THE FORECAST STEP

		Output	
		Distribution	Moments
Approach	Analytic	Variable Transform	Analytical Moments KF Taylor Series EKF
	Numeric	Monte Carlo PF	Ensemble EnKF

Kalman Analysis

- Forecast:
 Assume P(X_{t+1}) ~ N(μ_f,p_f)
- Observation error:
 Assume P(Y_{t+1} | X_{t+1}) ~ N(X_{t+1},r)
 - Likelihood = Data model
- * Assume Y, μ_f, p_f and r are known
- * $P(X_{t+1} | Y_{t+1}) \sim N(\mu_a, p_a)$

$$\rho = 1/r$$
 $\phi = 1/p_f$

$$X \mid Y \sim N\left(\frac{\rho}{n\rho + \phi}n\bar{Y} + \frac{\phi}{n\rho + \phi}\mu_f, n\rho + \phi\right)$$

 $X_a | Y \sim N(Y | HX_a, R) N(X_a | \mu_f, P_f)$

Solves to be

$$X_{a}|Y \sim N\left(\left(H^{T}R^{-1}H + P_{f}^{-1}\right)^{-1}\left(H^{T}R^{-1}Y + P_{f}^{-1}\mu_{f}\right), \\ \left(H^{T}R^{-1}H + P_{f}^{-1}\right)^{-1}\right)$$

Mean and variance simplify to

$$E[X_a|Y] = \mu_a = \mu_f + K(Y - H\mu_f)$$

$$Var[X_a|Y] = P_a = (I - KH)P_f$$

 $K = P_{fH}^{T} (R + H P_{f} H^{T})^{-1} \text{ Kalman Gain}$

d.

Forecast Step $X_{t+1} = MX_t + \epsilon$

The posterior distribution of X_{t+1} given X_t is multivariate normal with

$$\mu_{f,t+1} = E[X_{f,t+1} | X_{a,t}] = M_t \mu_{a,t}$$

$$P_{f,t+1} = Var[X_{f,t+1}|X_{a,t}] = Q_t + M_t P_{a,t-1} M_t^T$$

Extended Kalman Filter (EKF)

Addresses linear assumption of the Forecast

* $\mu_f = f(\mu_a)$

- Update variance using a Taylor Series expansion
 - * $F = Jacobian (df_i/dx_j)$
 - * $P_f \approx Q + F P_a F^T$ (was $Q + M P_a M^T$)
 - Can be extended to higher orders
- Jensen's Inequality: Biased, Normality assumption FALSE

Ensemble Kalman Filter (EnKF)

- O Analysis identical to KF
- Uses Monte Carlo samples to
 approximate Forecast distribution
 - Draw m samples from the Analysis
 posterior
 - **Run process model + process error**for sample $\mu_{f,t+1} = \frac{1}{m} \sum X_{f,i}$ $P_{f,t+1} = COV[X_{f,i}]$

posterior distribution

posterior

Ensemble Adjustment

- Alt to resampling analysis posterior,
 nudge current ensemble
- □ Useful when other uncert § latent states
- $\Box SVD: P = VLV^{-1}$
- **D** Normalize: $Z_i = \sqrt{L_f}^{-1} V_f^{-1} * (X_{i,f} \mu_f)$

D update: $X_{i,a} = V_a \sqrt{L_a} Z_i + \mu_a$

EnKF pro/con

- Nonlinear
- Existing code: No Jacobian
- Simple to implement, understand
- Sample size chosen based on power analysis
 - Con: larger than Analytical methods
- □ Simpler to add other sources of uncert. (e.g. driver)
- Moments OK on Jensen's Inequality
- Normal, but violates Normality
 - Analysis not hard to generalize (Likelihood * Prior)
 but unlikely to have an analytical sol'n

Localization

All KF flavors involve matrix
 inversion

Cheaper if correlation matrix is sparse

 Often assume correlations beyond some distance are zero

avoids spurious correlations

distance need not be physical

FILTER DIVERGENCE

Filter Divergence

Practitioners of DA in atm sci frequently worry about model variance collapsing to zero Model then ignores (diverges from) data D Process error is TUNED [BAD] Ecology is far less chaotic Occasionally, convergence is right answer In others, indicates misspecified process model or partitioning of process error

No KF variant can estimate process and observation errors

Random Walk State Space

$$P(X_t, \tau_{obs}, \tau_{proc} | Y_t) \propto N(Y_t | X_t, \tau_{obs}) \times N(X_t | X_{t-1}, \tau_{proc}) \Gamma(\tau_{proc}) \Gamma(\tau_{obs})$$

What if we forecast with a large Monte Carlo sample?

Can eliminate distributional assumptions!

Can eliminate Normal x Normal Analysis

 How to do Analysis step when prior is a sample, not an equation?

Particle Filter

Weights provided by the likelihood
 posterior ∝ likelihood × prior
 Estimates based on weighted mean, variance, CI, etc.

🛛 a.k.a. Sequentíal Monte Carlo

Resampling PF

- Problem: weights
 can converge on 1
 ensemble member
- Solution:
 resampling g
 split to maintain
 a distribution

When to resample?

Too often: loose particles through drift

- Not enough: converges (degeneracy),
 poor dístríbutíon
- Typically resample when effective sample size, 1/sum (W²), drops below some threshold (e.g. N/2)

□ NOTE: At resample, weights reset to 1!!

Particle Filter pro/con

O Con:

O Computation!

D Pros:

O Símple to implement

🛛 General, Flexible

O Can evaluate all params

Parallelizable

Kernel Smoothing

- Parameters lack process error, subject to degeneracy
- Can be resampled from kernel smoother = continuous approx of joint PDF
- Req choice of smoothing/bandwidth
- Even better if M-H accept/reject proposed Moves
- Global, Gaussian smoothing

 $\begin{aligned} \theta_i^* &= \bar{\theta} + h(\theta_i - \bar{\theta}) + \epsilon_i \sqrt{1 - h^2} \\ e_i &\sim MVN(0, \bar{\Sigma}) \end{aligned}$

h=1 no smoothing h=0 redraw iid

UNCERTAINTY PROPAGATION APPLIED IN THE FORECAST STEP

		Output	
		Distribution	Moments
Approacn	Analytic	Variable Transform	Analytical MomentsKFTaylor SeriesEKF
	Numeric	Monte Carlo PF	Ensemble EnKF

WHAT ABOUT THE <u>ANALYSIS</u> STEP?

What about MCMC?

- Option 1: Refit full State-Space Model
- Option 2: Just update forecast from
 State-Space
 - A: treat príors (forecast ξ
 params)as samples -> PF
 - D B: approximate priors w/ dist'n


```
LinStateSpace <-
model{
  X0 \sim dnorm(mu0, pa0)
     \sim dgamma(aq,bq)
  q
     ~ dgamma(ar,br)
  r
     ~ dnorm(m0,s)
  m
  for(i in 1:nt){
    Y[i] \sim dnorm(X[i],r)
    X[i] \sim dnorm(mu[i],q)
  }
  mu[1] <- X0
  for(i in 2:nt){
    mu[i] <- m*X[i-1]</pre>
  }
```

for (i in 1:nt)

LinFilterParam <- "
model{
 ## Priors
 X.ic ~ dnorm(mu0,pa0)
 q ~ dgamma(aq,bq)
 r ~ dgamma(ar,br)
 m ~ dnorm(mu.m,tau.m)</pre>

```
## Forecast
mu <- m*X.ic
X ~ dnorm(mu,q)</pre>
```

```
## Analysis
Y ~ dnorm(X,r)
}"
```

priors set based on previous posteriors

GENERALIZED ENSEMBLE FILTER

Estimated Process Error

 x_{lt+1}

Take Homes

- Iterative Forecast-Analysis Cycle (Data Assimilation) allow us to continually confront models with data
- All DA variants are forward-only special cases of State Space model
- Forecast Step: Standard DA methods map to uncertainty propagation axes
- Analysis step: Do not feel constrained by Kalman, Take Assumptions into your own hands, MCMC often viable