
Data Assimilation 1:�
         Analytical Methods





FORECAST-ANALYSIS CYCLE
Update prior 

understanding of 
the system based 

on new 
information

Predict the future using 
your current understanding 
of the system
➡Model-based
➡Error-propagation



The Analysis Problem

✤ Prior to observing how the future plays out, what is our best 
estimate of the future state of the system, Xt+1?

✤ The forecast, P(Xt+1)

✤ Once we make (imperfect) observations of the system, Yt, what’s 
our best estimate of Xt?

✤ P(Xt+1) = P(Yt+1) ?

✤ P(Xt+1|Yt+1) ∝ P(Yt+1|Xt+1) P(Xt+1)

PriorLikelihoodPosterior













Simplest Analysis

✤ P(Xt+1 |Yt+1) ~ N(µa,pa)

✤ Forecast: 
Assume P(Xt+1) ~ N(µf,pf)

✤ Observation error: 
Assume P(Yt+1|Xt+1) ~ N(Xt+1,r)

✤ Likelihood = Data model

✤ Assume Y, µf, pf and r are known

X |Y ∼ N ( ρ
nρ + ϕ

nȲ +
ϕ

nρ + ϕ
μf , nρ + ϕ)

ρ = 1/r ϕ = 1/pf



Precision controls influence

Less Precise Data

Less Precise Model



Simplest Forecast

✤ Process Model 
Xt+1 = mXt + εt 

✤ Process error 
εt ~ N(0,q)

✤ Assume m and q are known

✤ State uncertainty (IC) 
P(Xt |Yt) ~ N(µa,pa)

✤ What is P(Xt+1)?

✤ E[Xt+1] = E[mXt + εt] = mµa 

✤ Var[Xt+1] = Var[mXt + εt]

✤ m2Var[Xt] + Var[εt] - 
2Cov[mXt,εt]

✤ ≈ m2Var[Xt] + Var[εt]

✤ m2pa + q 

✤ P(Xt+1) ~ N(mµa ,m2pa + q)



Forecast Cycle

✤ Forecast Step: 
P(Xt+1) ~ N(µf = mµa , 
                     pf = m2pa + q)

✤ Analysis Step 
P(Xt+1 |Yt+1) ~ N(µa,pa)

✤ 1/pa = n/pf + 1/r

✤ µa = (µf /pf +nY/r)·pa 

✤ Has an analytical solution!
✤ Kalman Filter

Rudolf Kalman



–  D AV E  M O O R E

“Data assimilation isn’t rocket science, 

but you can use it for that.” 
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✤ (n x 1) vector of state means, µa or µf

✤ (n x n) state error covariance matrix, Pa or Pf     (was pa, pf )

✤ (p x 1) vector of observations, Y

✤ (p x p) observation error covariance matrix, R   (was r)

✤ (p x n) observation matrix, H

✤ (n x n) linear process model, M    (was m)

✤ (n x n) process error covariance matrix, Q    (was q)

Generalized to Multivariate



Kalman Gain

P−1
a = HTR−1H + P−1

f



Kalman Gain



Example

✤ Assume µf = {µ1,µ2,µ3}, Y = {y2,y3}, and observation error is R = σ2 I

✤ The posterior mean for the unobserved X1 is

X1     X2     X3

Y2


Y3

covariances among 
things we know

covariance between 
knowns and unknown



Forecast Step Xt+1 = MXt + ϵ



Pro/Con of Kalman Filter (KF)

✤ Analytically tractable

✤ Depends only upon the 
PREVIOUS state, the current 
Forecast, and the current Data 
 
 

✤ Linear

✤ Normal 

✤ Matrix inversion

✤ Assumes all parameters 
(H, R, M, Q) are known

✤ Forward only



UNCERTAINTY PROPAGATION 
APPLIED IN THE FORECAST STEP

KF
EKF

EnKFPF



Extended Kalman Filter (EKF)

✤ Addresses linear assumption of the Forecast

✤ µf  = f(µa)

✤ Update variance using a Taylor Series expansion

✤ F = Jacobian (dfi/dxj)

✤ Pf ≈ Q + F Pa FT        (was Q + M Pa MT)

✤ Can be extended to higher orders

✤ Jensen’s Inequality: Biased, Normality assumption FALSE
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Nt+1 = Nt + rNt (1 +
N
K ) ∂Nt+1

∂Nt
= 1 + r −

2r
K

Nt


