IN AN ENSEMBLE MODEL, FORECASTERS RUN MANY DIFFERENT VERSIONS OF A WEATHER MODEL WITH SUGHTLY DIFFERENT INITIAL CONDITIONS. THIS HELPS ACCOUNT FOR UNCERTAINTY AND SHOWS FORECASTERS A SPREAD OF POSSIBLE OUTCOMES.

MEMBERS IN A TYPICAL ENSEMBLE:

A UNIVERSE WHERE...

- ... RAIN IS 0.5% MORE LIKELY IN SOME AREAS
- ... WIND SPEEDS ARE SLIGHTLY LOWER
- ... PRESSURE LEVELS ARE RANDOMLY TWEAKED
- ...DOGG RUN SLIGHTLY FASTER
- ... THERE'S ONE EXTRA CLOUD IN THE BAHAMAS
- ...GERMANY WON WWII
- ... SNAKES ARE WIDE INSTEAD OF LONG
- ... WILL SMITH TOOK THE LEAD IN THE MATRIX
 INSTEAD OF WILD WILD WEST
- ... SWIMMING POOLS ARE CARBONATED
- ...SLICED BREAD, AFTER BEING BANNED IN JANUARY 1943, WAS NEVER RE-LEGALIZED

PROPAGATING, ANALYZING, AND REDUCING UNCERTAINTY

Concepts

- * Sensitivity Analysis

 How does a change in X translate into a change in Y?
- * Uncertainty Propagation

 How do we forecast Y with uncertainty?

 How does the uncertainty in X affect the uncertainty in Y?
- * Uncertainty Analysis which sources of uncertainty are most important?
- * Optimal Design

 How do we best reduce the uncertainty in our forecast?

Sensitivity Methods

- * Local
 - * Analytical: df/d0
 - * One-at-a-time perturbations

Saltelli et al. 2008. Global Sensitivity Analysis

Sensitivity Analysis

Global Sensitivity

Curse of Dimensionality

Sensitivity Methods

- * Local
 - * Analytical: df/d0
 - * One-at-a-time perturbations
- * Global
 - * Monte Carlo
 - * Sobol
 - * Emulators
 - * Elementary Effects
 - * Group Sampling

Extensive but Costly

Sparse but Cheap

Saltelli et al. 2008. Global Sensitivity Analysis

Monte Carlo Sensitivity

Free if you do MC uncertainty propagation or MCMC

UNCERTAINTY PROPAGATION

UNCERTAINTY PROPAGATION

Approach

Analytic

Distribution

Monte Carlo

Variable Transform

Numeric

Output

Moments

Analytical Moments

Taylor Series

Ensemble

I DON'T KNOW HOW TO PROPAGATE ERROR CORRECTLY, SO I JUST PUT ERROR BARS ON ALL MY ERROR BARS.

VARIABLE TRANSFORM

$$|P_{Y}[y] = P_{\theta}[f^{-1}(y)] \cdot \left| \frac{df^{-1}(y)}{dy} \right|$$

$$Var(aX) = a^2 Var(X)$$

$$Var(X+b)=Var(X)$$

Analytical Moments

$$Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)$$

$$Var(aX+bY)=a^2 Var(X)+b^2 Var(Y)+2abCov(X,Y)$$

$$Var\left(\sum X\right) = \sum Var(X_i) + 2\sum_{i < j} Cov(X_i, X_j)$$

$$Var(X) = Var(E[X|Y]) + E[Var(X|Y)]$$

REL'N TO SENSITIVITY

TAYLOR SERIES

LINEAR APPROX

$$Var[f(x|\theta)] \approx Var \left[f(x|\bar{\theta}) + \frac{\frac{df}{d\theta}(x|\bar{\theta})}{1!} (\theta - \bar{\theta}) + \dots \right]$$

$$var[f(x)] \approx \left(\frac{\partial f}{\partial \theta_i}\right)^2 var[\theta]$$

LINEAR APPROX

$$Var[f(x|\theta)] \approx Var \left[f(x|\bar{\theta}) + \frac{\frac{df}{d\theta}(x|\bar{\theta})}{1!} (\theta - \bar{\theta}) + \dots \right]$$

$$var[f(x)] \approx \sum_{i \neq j} \left(\frac{\partial f}{\partial \theta_{i}}\right)^{2} var[\theta_{i}] + \sum_{i \neq j} \left(\frac{\partial f}{\partial \theta_{i}}\right) \left(\frac{\partial f}{\partial \theta_{i}}\right) cov[\theta_{i}, \theta_{j}]$$

#

$$Y_{t+1} = f(Y_t, X_t | \theta) + \varepsilon$$

$$Var[Y_{t+1}] \approx \underbrace{\left(\frac{df}{dY}\right)^{2}}_{stability} \underbrace{Var[Y_{t}]}_{lC} + \underbrace{\left(\frac{df}{dX}\right)^{2}}_{uncert} \underbrace{Var[X]}_{driver} + \underbrace{\left(\frac{df}{d\theta}\right)^{2}}_{uncert} \underbrace{Var[\theta]}_{param} \underbrace{Var[\theta]}_{param} + \underbrace{Var[\varepsilon]}_{param}$$

COV & SCALING

Scaling very dependent on spatial and temporal auto- & cross-correlation

$$\sum \sum \frac{\partial f}{\partial X_i} \frac{\partial f}{\partial X_j} COV[X_i, X_j]$$

UNCERTAINTY PROPAGATION

		Output	
Approach		Distribution	Moments
	Analytic	Variable Transform	Analytical Moments Taylor Series
	Numeric	Monte Carlo	Ensemble

Numerical Approximation

- * Monte Carlo Simulation --> Distribution
- * Ensemble Analysis --> Moments

JENSEN'S INEQUALITY

$$f(\bar{x}) \neq \overline{f(x)}$$

MONTE CARLO UNCERTAINTY

- for (i in 1:n)
 - draw random values from distributions
 - run model 🕏
 - save results
- summarize distributions

ENSEMBLE UNCERTAINTY

- * for (i in 1:n) ** Requires smaller N to estimate moments than to approximate full PDF
 - draw random values from distributions
 - run model

Already have this from MCMC!

- save results
- Fit PDF to results
- Use PDF for intervals, etc.

Monte Carlo

Taylor Series

Unscented Transform

UNCERTAINTY PROPAGATION

		Output	
Approach		Distribution	Moments
	Analytic	Variable Transform	Analytical Moments Taylor Series
	Numeric	Monte Carlo	Ensemble

Uncertainty Analysis

VARIANCE DECOMPOSITION

SWITCHGRASS YIELD, CENTRAL ILLINOIS

How do the drivers of forecast uncertainty vary across ecological system?

Tools for model-data feedbacks

* Power analysis

- * Sample size needed to detect an effect size
- * Minimum effect size detectable given a size

* Observational design

- * What do I need to measure?
- * Where should I collect new data?
- * How do I gain new info most efficiently?

$SE \propto 1/sqrt(n)$

Power = f(effect size, SE)

Pseudo-data simulation

for(k in 1:M)
Draw random data of size N
Fit model
Save Parameters

- * Nonparameteric bootstrap: resample data
- * Parameteric bootstrap: assume param, sim data
- * Embed in overall loop over N or different effect sizes
- * Summarize distribution

Observing System Simulation Experiments

- * Simulate "true" system
- * Simulate pseudo-observations
- * Assimilate pseudo-observations
- * Assess impact on estimates
- Augment an existing network
 - Additional locations
 - New Sensors
- Common in Weather, Remote Sensing, Oceanography

Zeng et al 2020 "Use of Observing System Simulation Experiments in the United States" BAMS https://doi.org/10.1175/BAMS-D-19-0155.1