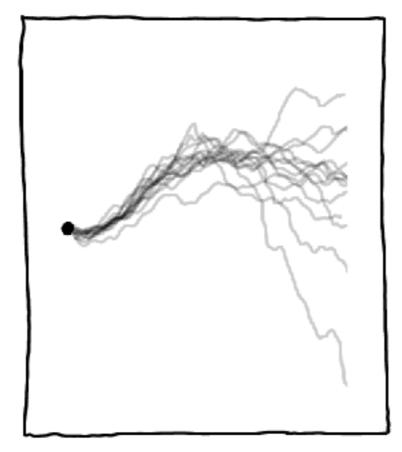
IN AN ENSEMBLE MODEL, FORECASTERS RUN MANY DIFFERENT VERSIONS OF A WEATHER MODEL WITH SUGHTLY DIFFERENT INITIAL CONDITIONS. THIS HELPS ACCOUNT FOR UNCERTAINTY AND SHOWS FORECASTERS A SPREAD OF POSSIBLE OUTCOMES.





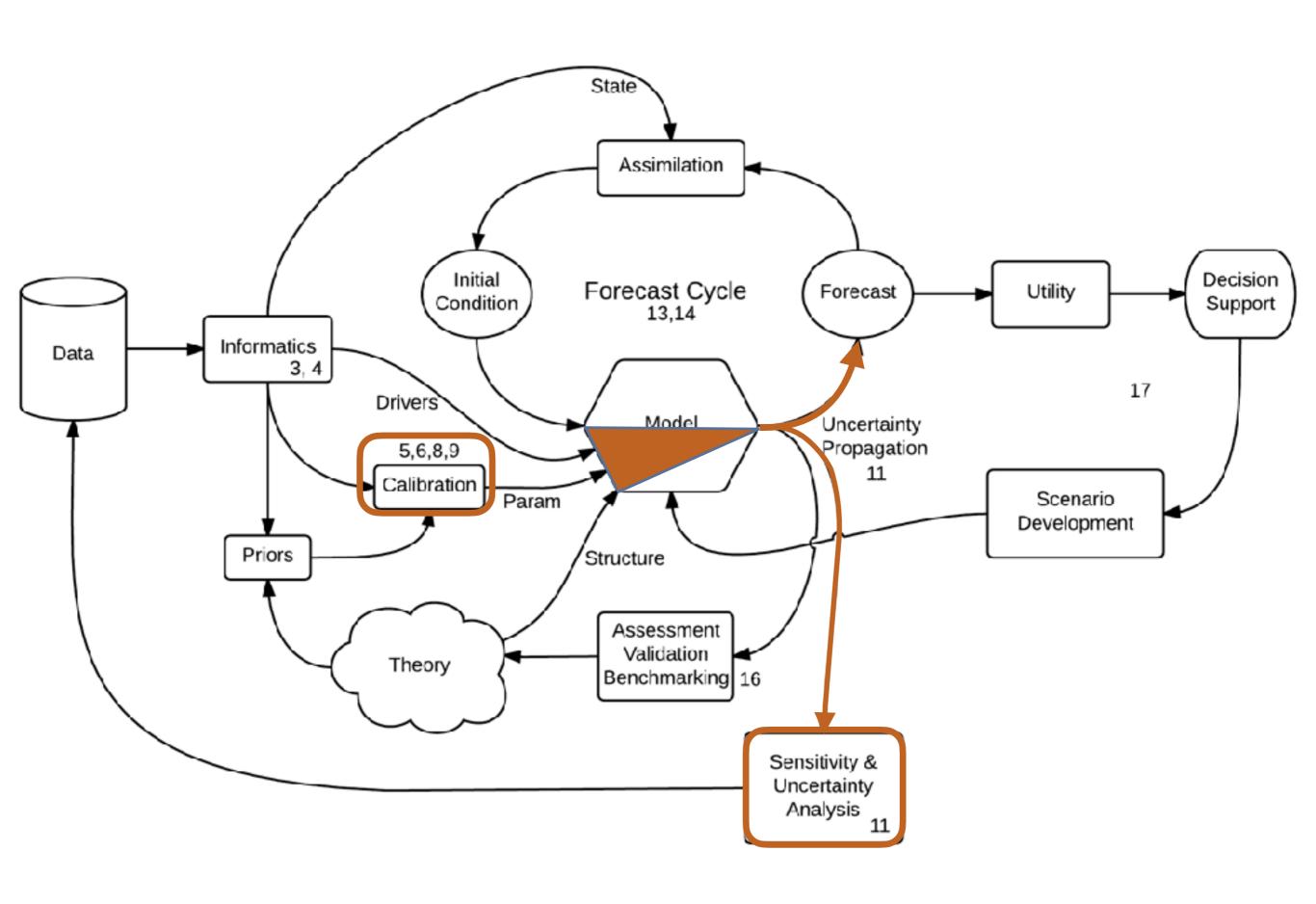


#### MEMBERS IN A TYPICAL ENSEMBLE:

A UNIVERSE WHERE...

- ... RAIN IS 0.5% MORE LIKELY IN SOME AREAS
- ... WIND SPEEDS ARE SLIGHTLY LOWER
- ... PRESSURE LEVELS ARE RANDOMLY TWEAKED
- ...DOGG RUN SLIGHTLY FASTER
- ... THERE'S ONE EXTRA CLOUD IN THE BAHAMAS
- ...GERMANY WON WWII
- ... SNAKES ARE WIDE INSTEAD OF LONG
- ... WILL SMITH TOOK THE LEAD IN THE MATRIX
  INSTEAD OF WILD WILD WEST
- ... SWIMMING POOLS ARE CARBONATED
- ...SLICED BREAD, AFTER BEING BANNED IN JANUARY 1943, WAS NEVER RE-LEGALIZED

# PROPAGATING, ANALYZING, AND REDUCING UNCERTAINTY



## Concepts

- \* Sensitivity Analysis

  How does a change in X translate into a change in Y?
- \* Uncertainty Propagation

  How do we forecast Y with uncertainty?

  How does the uncertainty in X affect the uncertainty in Y?
- \* Uncertainty Analysis which sources of uncertainty are most important?
- \* Optimal Design

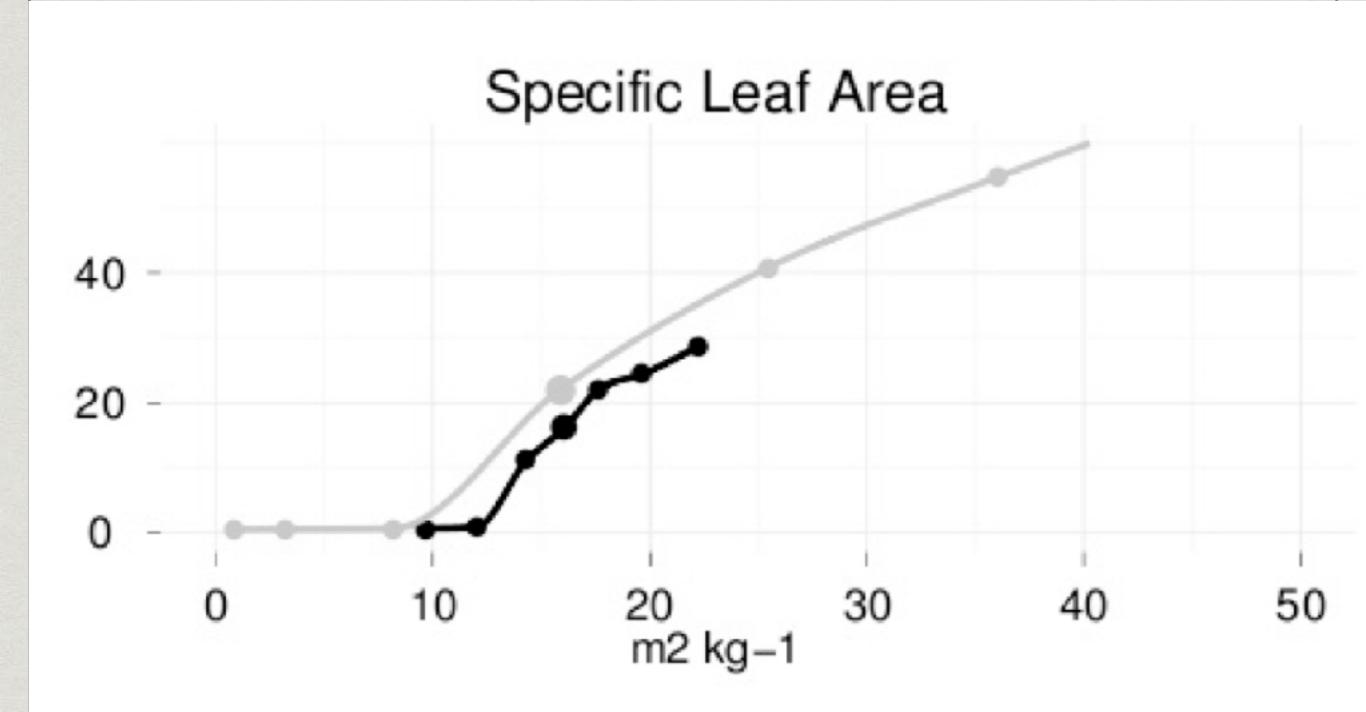
  How do we best reduce the uncertainty in our forecast?

## Sensitivity Methods

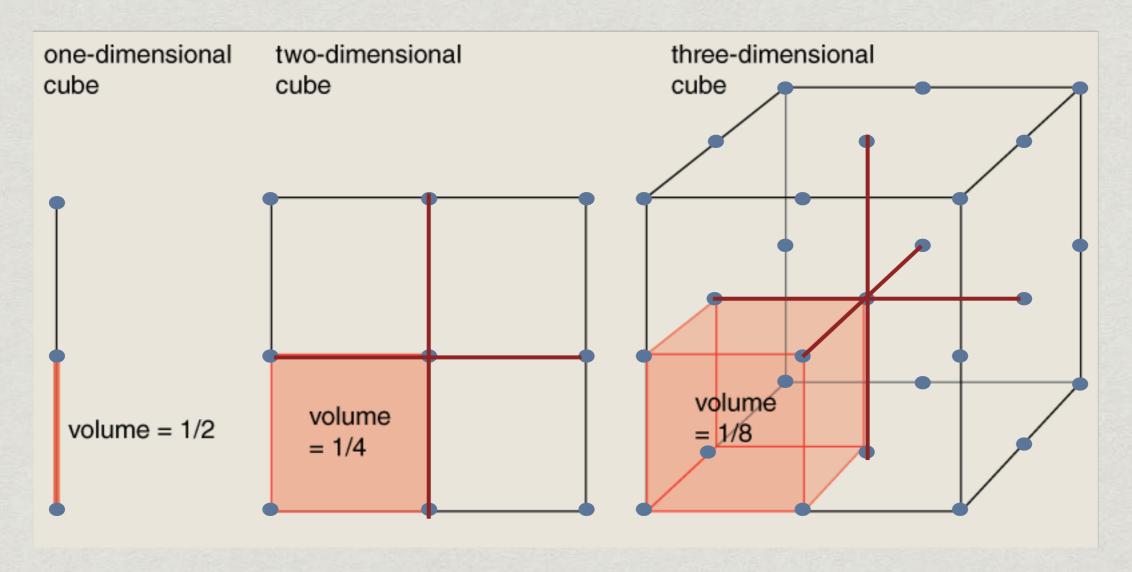
- \* Local
  - \* Analytical: df/d0
  - \* One-at-a-time perturbations

Saltelli et al. 2008. Global Sensitivity Analysis

## Sensitivity Analysis



## Global Sensitivity



**Curse of Dimensionality** 

## Sensitivity Methods

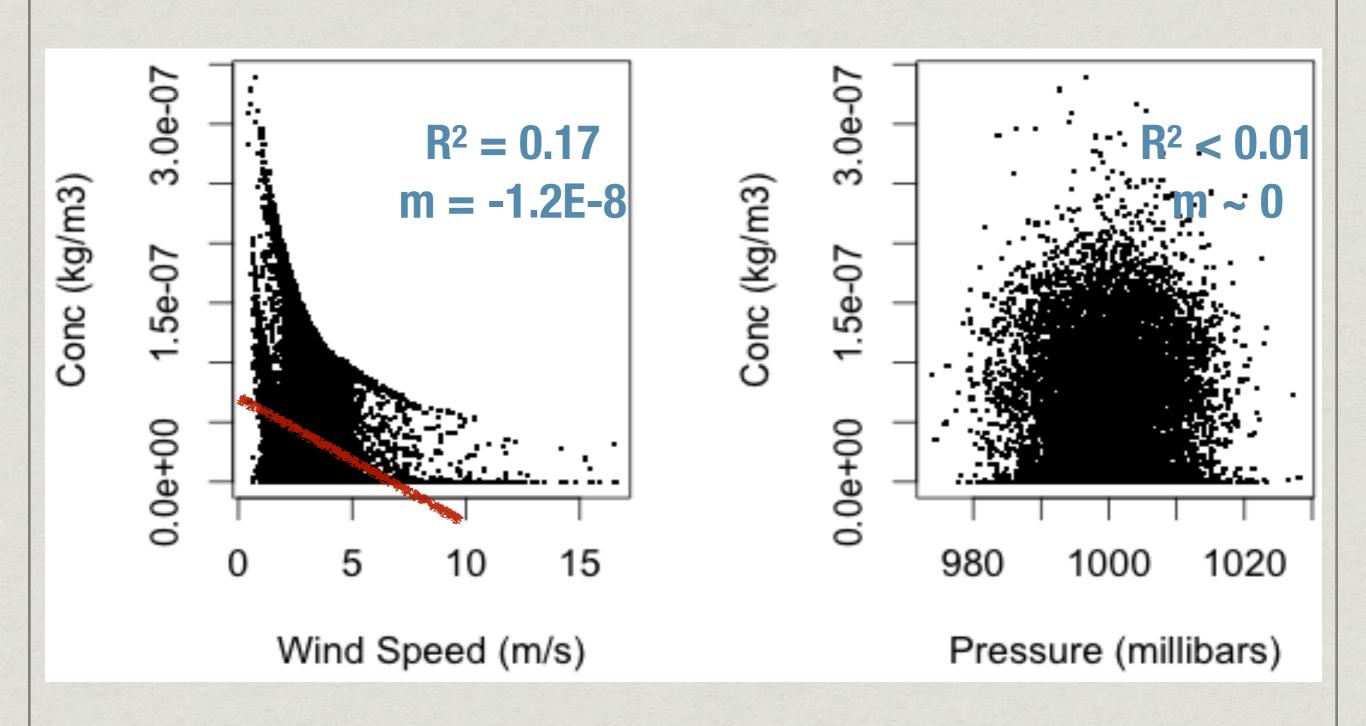
- \* Local
  - \* Analytical: df/d0
  - \* One-at-a-time perturbations
- \* Global
  - \* Monte Carlo
  - \* Sobol
  - \* Emulators
  - \* Elementary Effects
  - \* Group Sampling

**Extensive but Costly** 

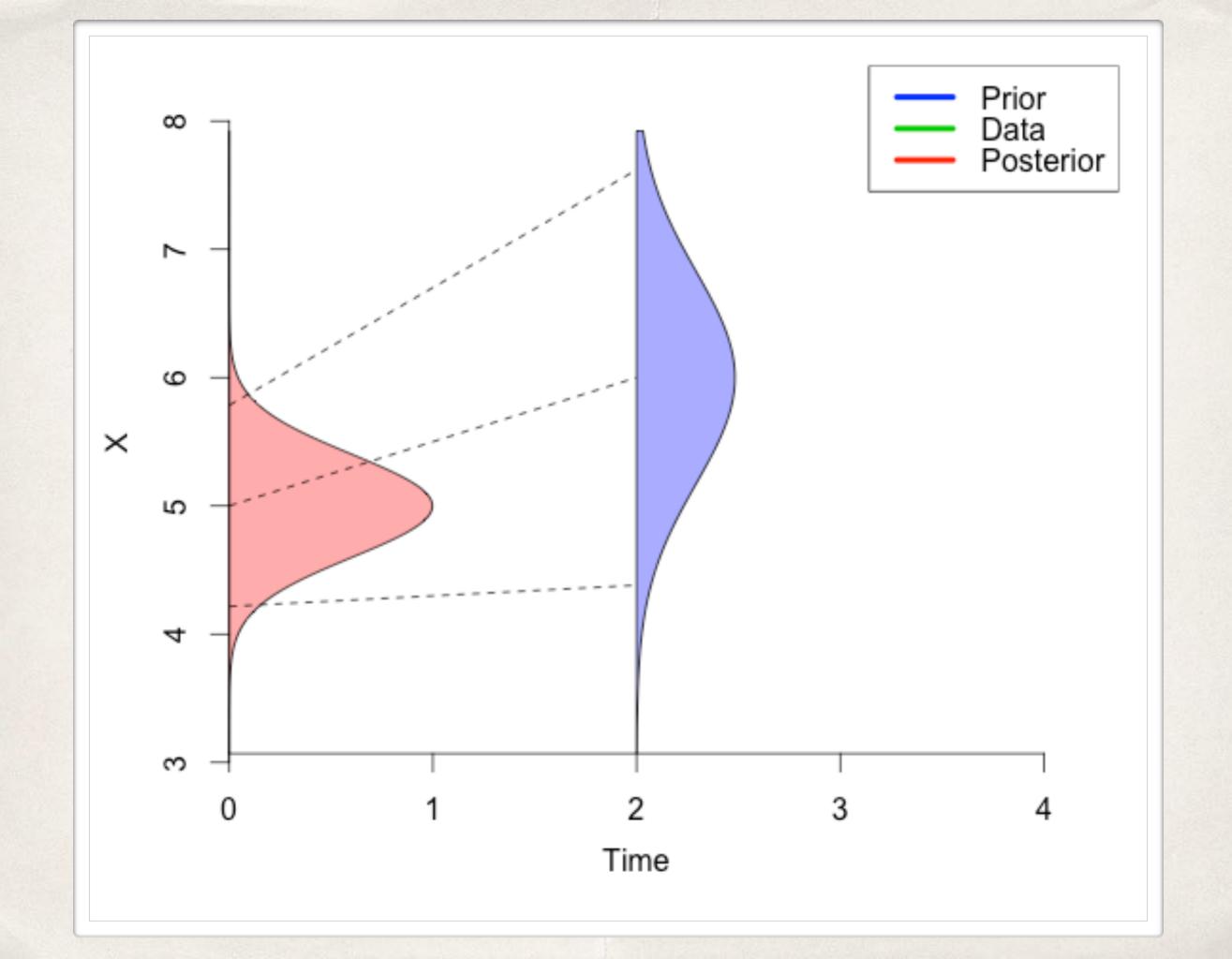
**Sparse but Cheap** 

Saltelli et al. 2008. Global Sensitivity Analysis

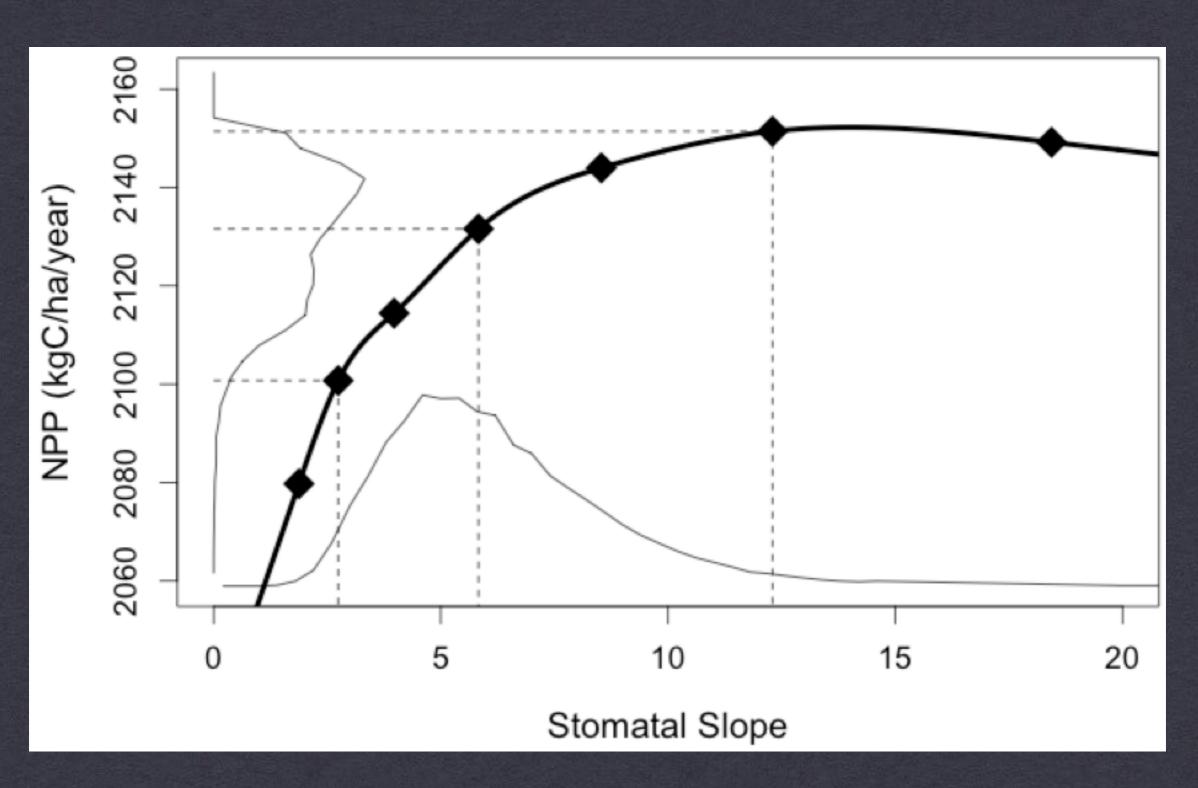
## Monte Carlo Sensitivity



Free if you do MC uncertainty propagation or MCMC



#### UNCERTAINTY PROPAGATION



#### **UNCERTAINTY PROPAGATION**

Approach

Analytic

Distribution

Monte Carlo

Variable Transform

Numeric

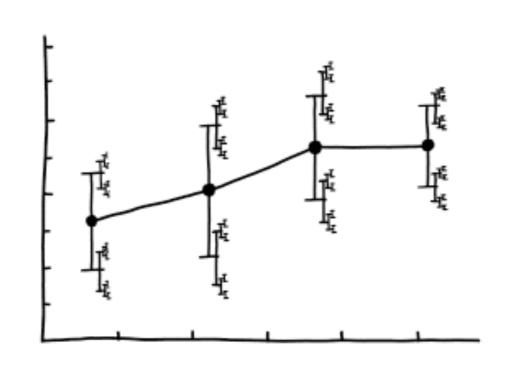
Output

**Moments** 

Analytical Moments

Taylor Series

Ensemble



I DON'T KNOW HOW TO PROPAGATE ERROR CORRECTLY, SO I JUST PUT ERROR BARS ON ALL MY ERROR BARS.

#### VARIABLE TRANSFORM

$$|P_{Y}[y] = P_{\theta}[f^{-1}(y)] \cdot \left| \frac{df^{-1}(y)}{dy} \right|$$

$$Var(aX) = a^2 Var(X)$$

$$Var(X+b)=Var(X)$$

#### Analytical Moments

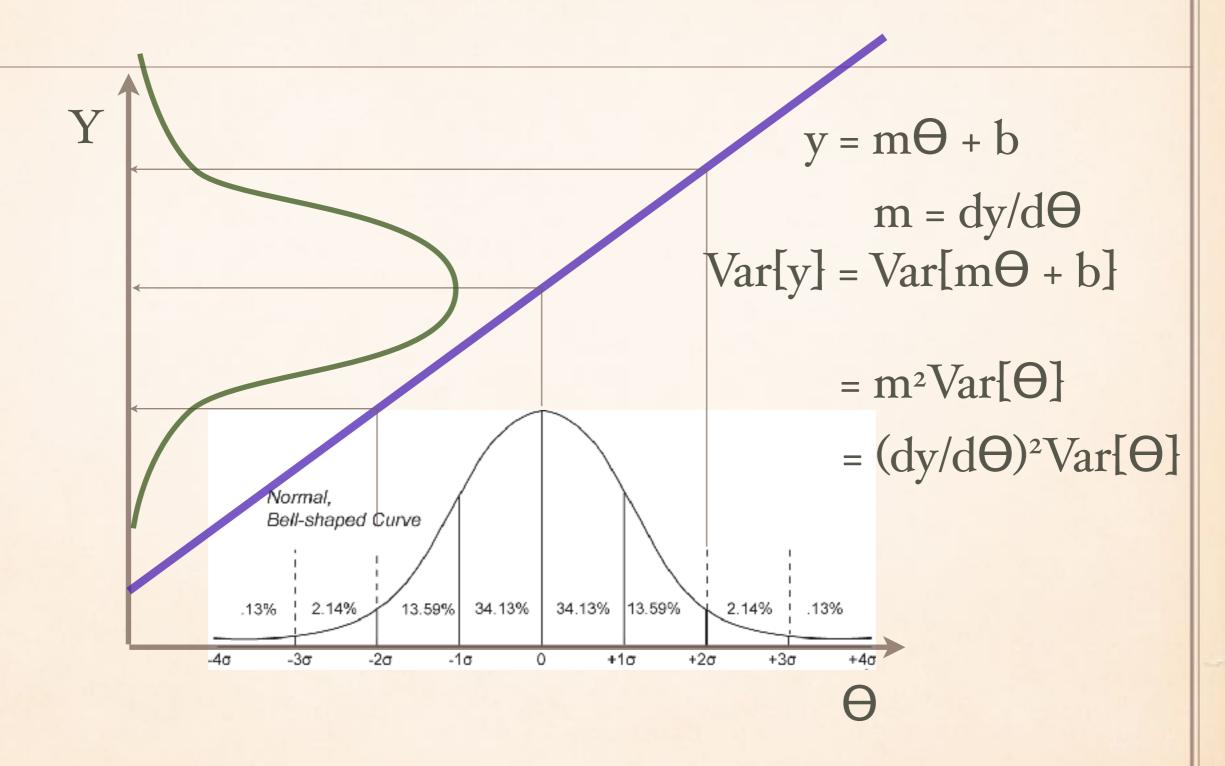
$$Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)$$

$$Var(aX+bY)=a^2 Var(X)+b^2 Var(Y)+2abCov(X,Y)$$

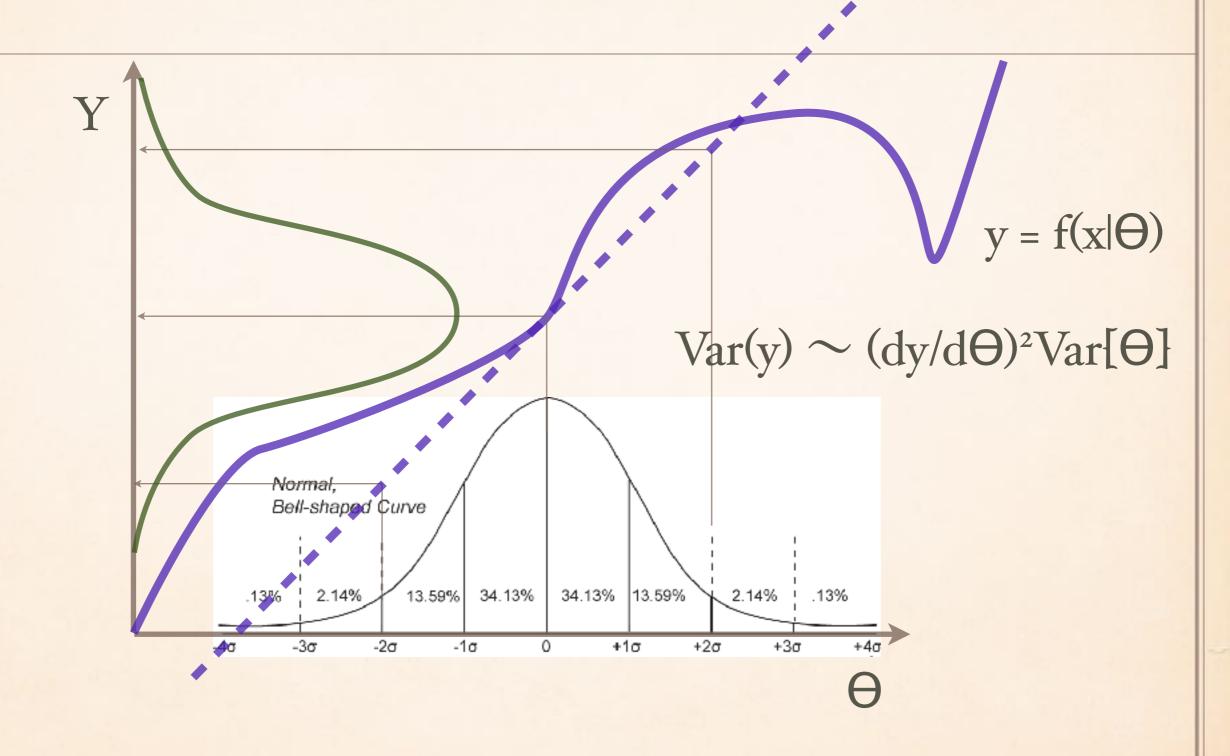
$$Var\left(\sum X\right) = \sum Var(X_i) + 2\sum_{i < j} Cov(X_i, X_j)$$

$$Var(X) = Var(E[X|Y]) + E[Var(X|Y)]$$

#### REL'N TO SENSITIVITY



#### TAYLOR SERIES



#### LINEAR APPROX

$$Var[f(x|\theta)] \approx Var \left[ f(x|\bar{\theta}) + \frac{\frac{df}{d\theta}(x|\bar{\theta})}{1!} (\theta - \bar{\theta}) + \dots \right]$$

$$var[f(x)] \approx \left(\frac{\partial f}{\partial \theta_i}\right)^2 var[\theta]$$

#### LINEAR APPROX

$$Var[f(x|\theta)] \approx Var \left[ f(x|\bar{\theta}) + \frac{\frac{df}{d\theta}(x|\bar{\theta})}{1!} (\theta - \bar{\theta}) + \dots \right]$$

$$var[f(x)] \approx \sum_{i \neq j} \left(\frac{\partial f}{\partial \theta_{i}}\right)^{2} var[\theta_{i}] + \sum_{i \neq j} \left(\frac{\partial f}{\partial \theta_{i}}\right) \left(\frac{\partial f}{\partial \theta_{i}}\right) cov[\theta_{i}, \theta_{j}]$$

#

$$Y_{t+1} = f(Y_t, X_t | \theta) + \varepsilon$$

$$Var[Y_{t+1}] \approx \underbrace{\left(\frac{df}{dY}\right)^{2}}_{stability} \underbrace{Var[Y_{t}]}_{lC} + \underbrace{\left(\frac{df}{dX}\right)^{2}}_{uncert} \underbrace{Var[X]}_{driver} + \underbrace{\left(\frac{df}{d\theta}\right)^{2}}_{uncert} \underbrace{Var[\theta]}_{param} \underbrace{Var[\theta]}_{param} + \underbrace{Var[\varepsilon]}_{param}$$

#### COV & SCALING

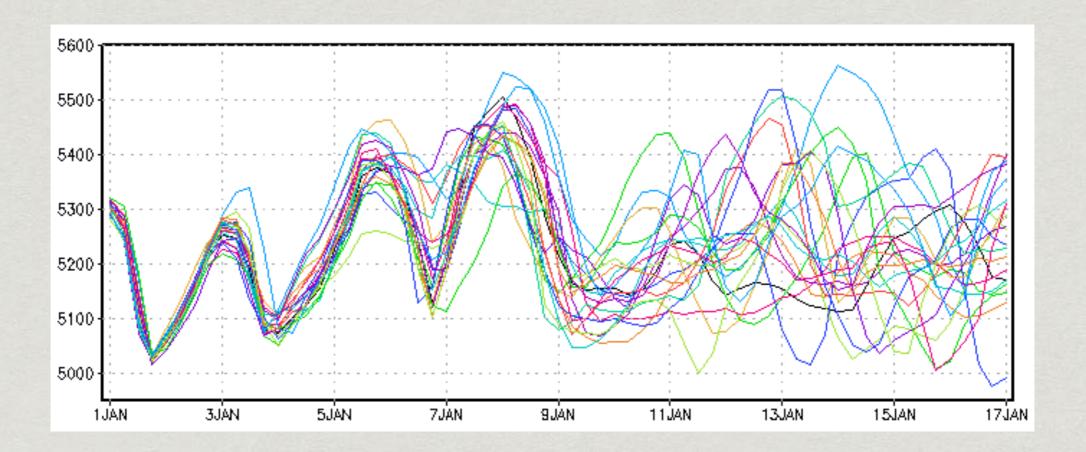
Scaling very dependent on spatial and temporal auto- & cross-correlation

$$\sum \sum \frac{\partial f}{\partial X_i} \frac{\partial f}{\partial X_j} COV[X_i, X_j]$$

### UNCERTAINTY PROPAGATION

|          |          | Output             |                                     |
|----------|----------|--------------------|-------------------------------------|
| Approach |          | Distribution       | Moments                             |
|          | Analytic | Variable Transform | Analytical Moments<br>Taylor Series |
|          | Numeric  | Monte Carlo        | Ensemble                            |

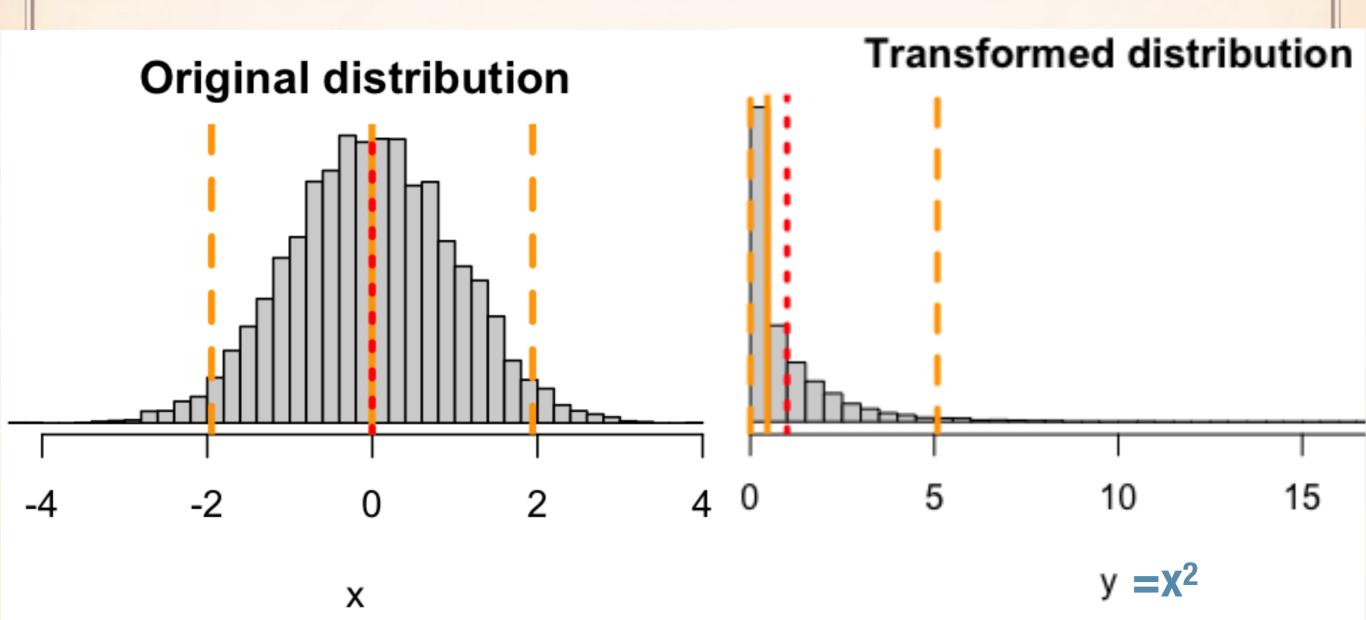
## Numerical Approximation



- \* Monte Carlo Simulation --> Distribution
- \* Ensemble Analysis --> Moments

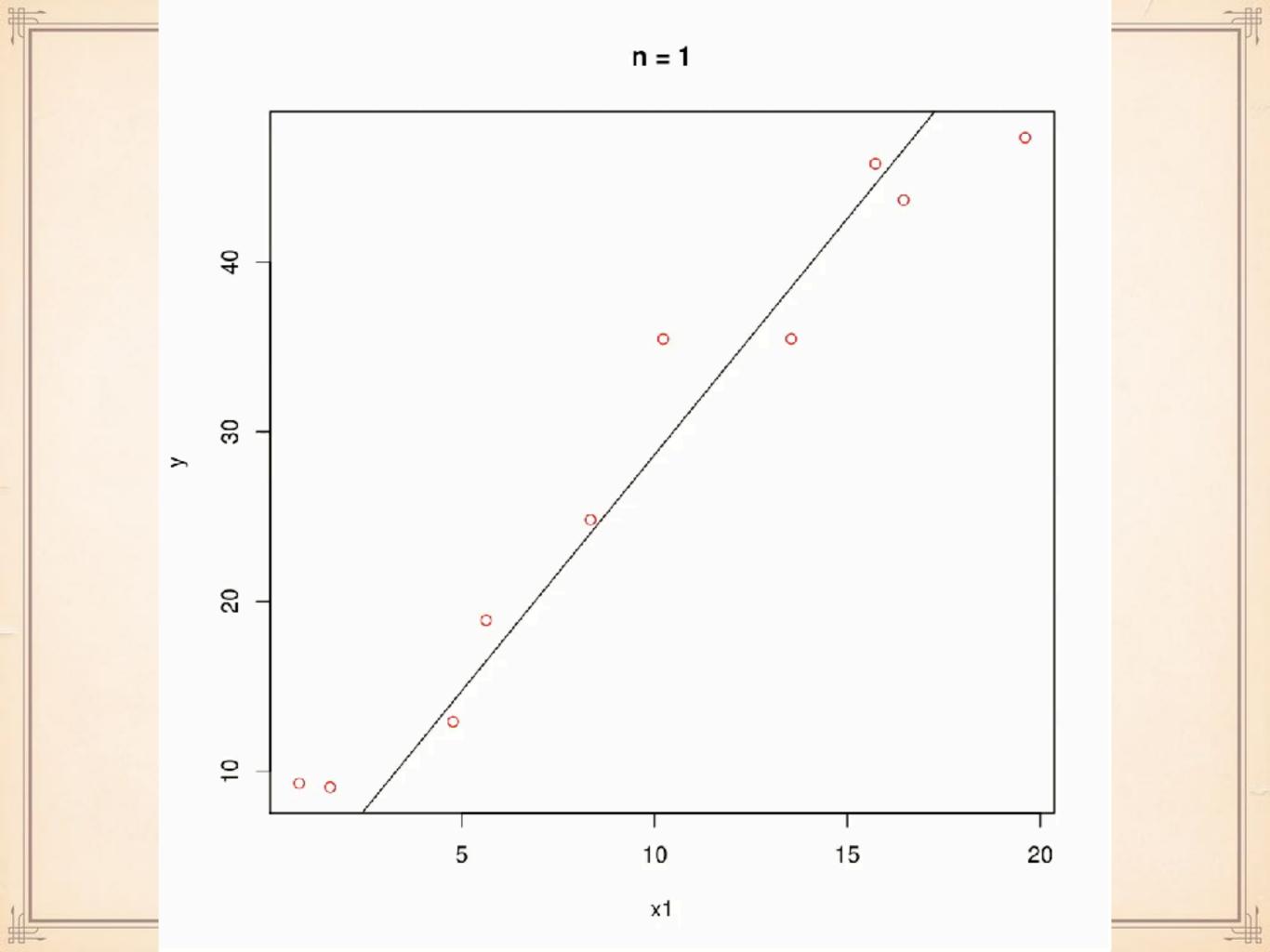
## JENSEN'S INEQUALITY

$$f(\bar{x}) \neq \overline{f(x)}$$



# MONTE CARLO UNCERTAINTY

- for (i in 1:n)
  - draw random values from distributions
  - run model 🕏
  - save results
- summarize distributions



### ENSEMBLE UNCERTAINTY

- \* for (i in 1:n) \*\* Requires smaller N to estimate moments than to approximate full PDF
  - draw random values from distributions
  - run model

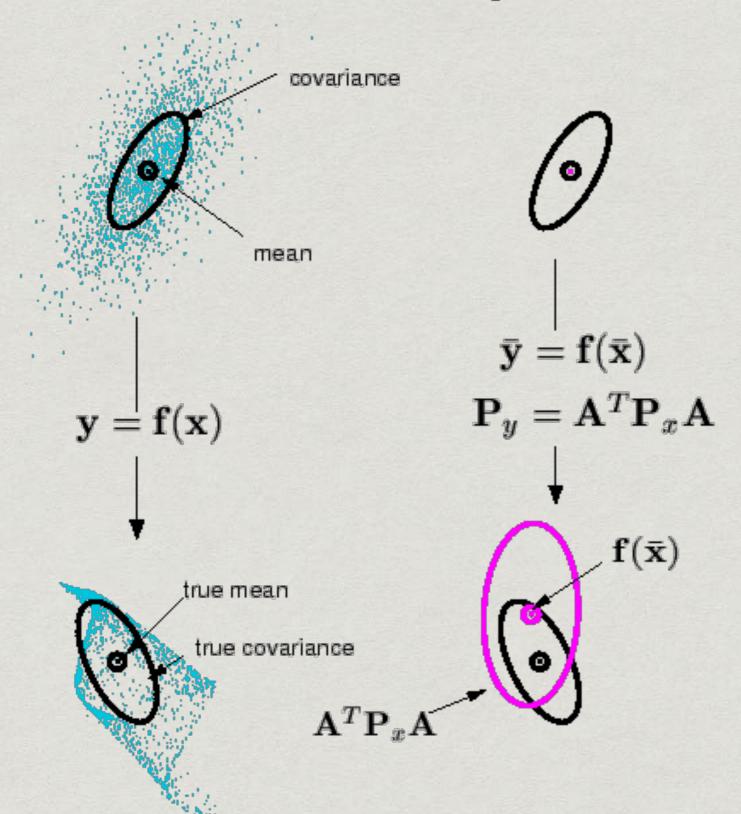
Already have this from MCMC!

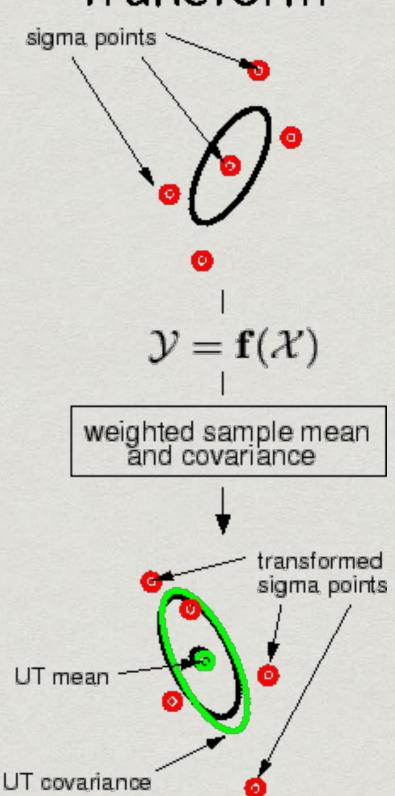
- save results
- Fit PDF to results
- Use PDF for intervals, etc.

#### Monte Carlo

#### **Taylor Series**

## Unscented Transform

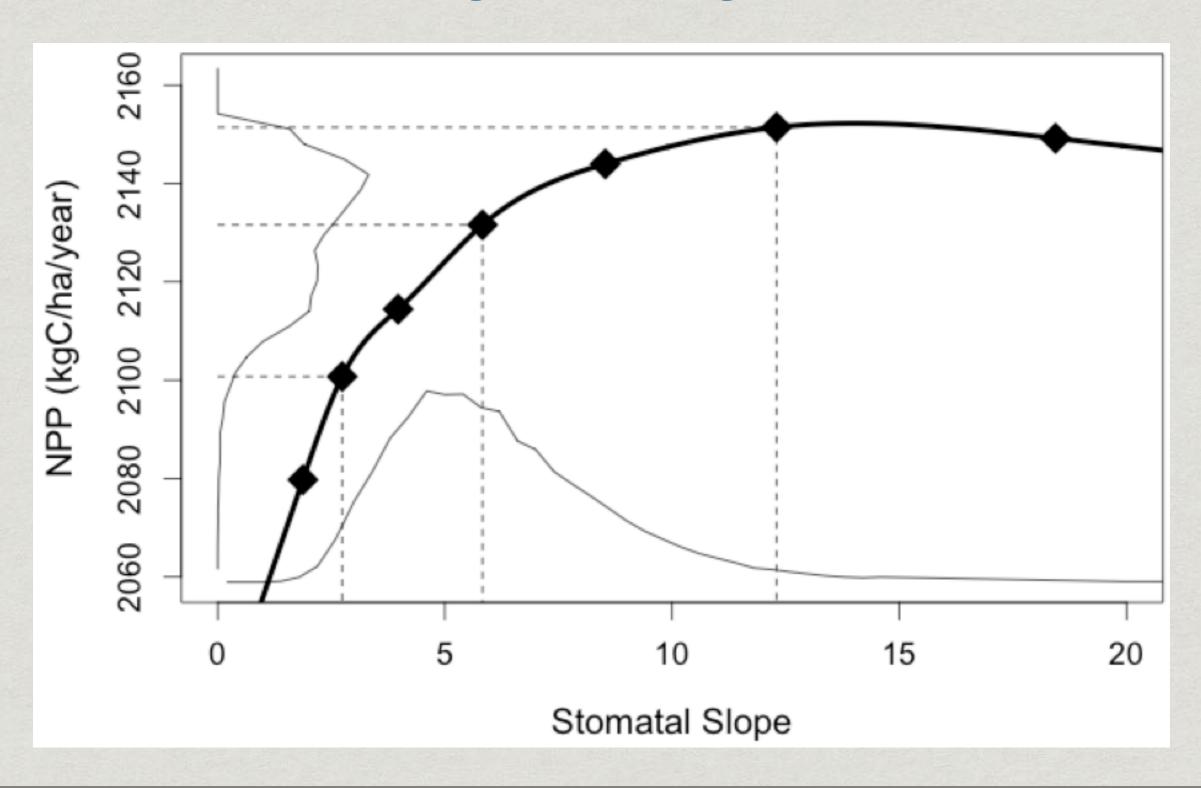


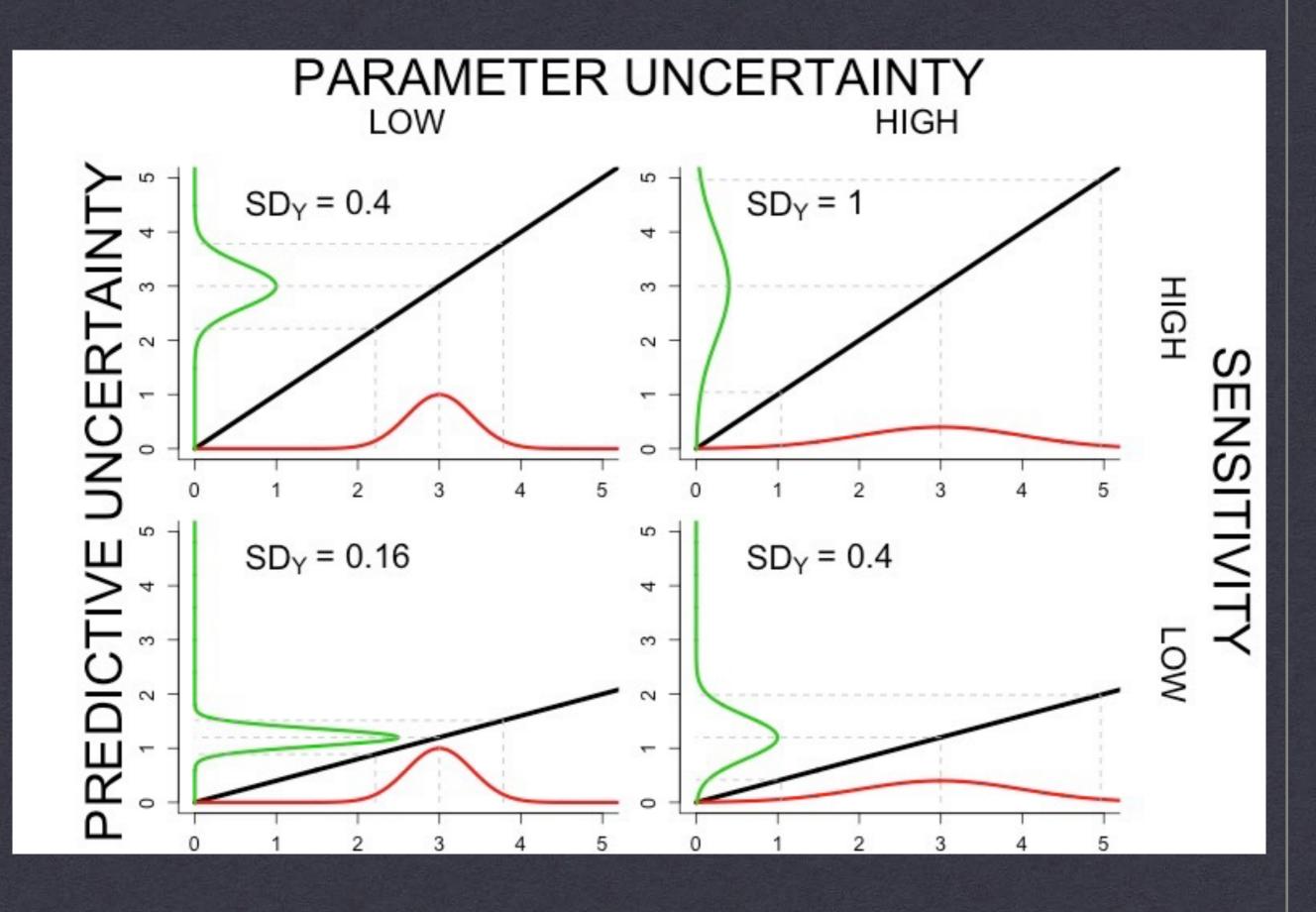


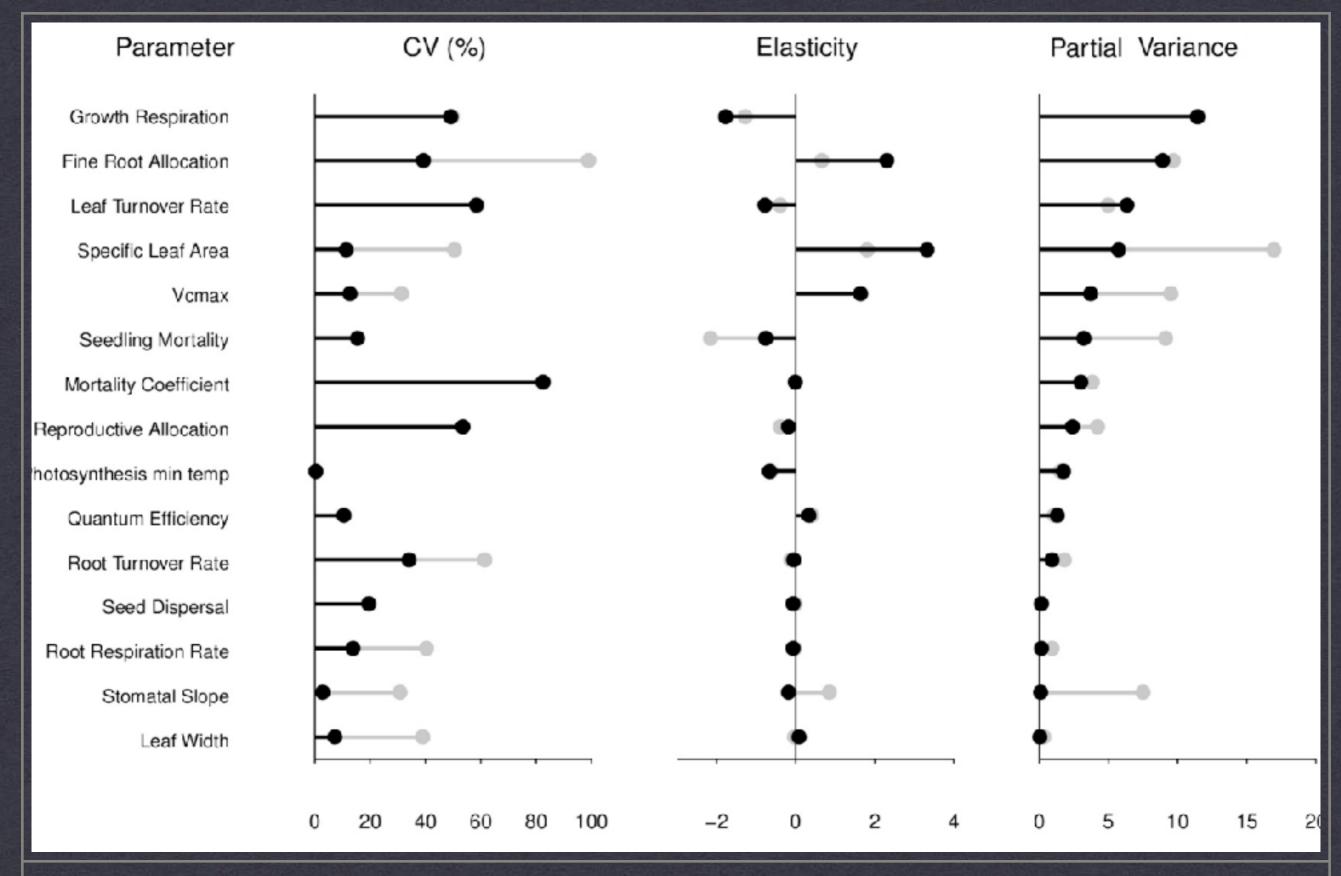
### UNCERTAINTY PROPAGATION

|          |          | Output             |                                     |
|----------|----------|--------------------|-------------------------------------|
| Approach |          | Distribution       | Moments                             |
|          | Analytic | Variable Transform | Analytical Moments<br>Taylor Series |
|          | Numeric  | Monte Carlo        | Ensemble                            |

## Uncertainty Analysis



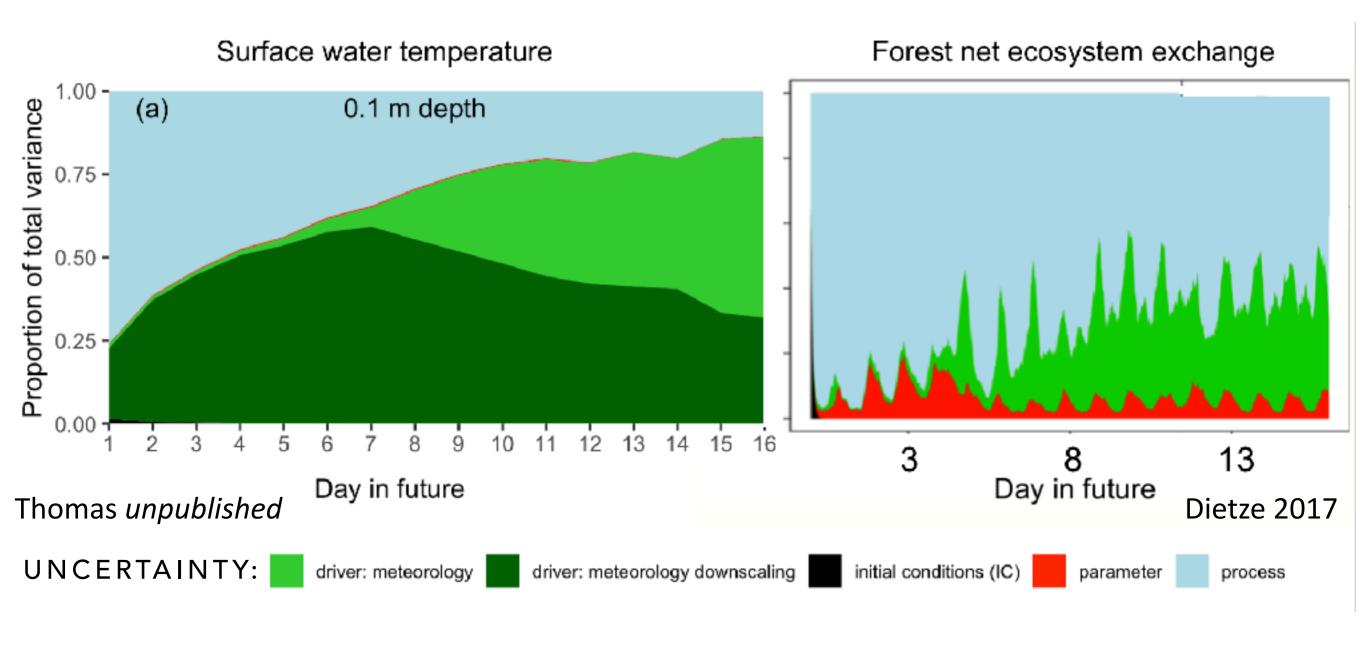




#### **VARIANCE DECOMPOSITION**

**SWITCHGRASS YIELD, CENTRAL ILLINOIS** 

## How do the drivers of forecast uncertainty vary across ecological system?



#### Tools for model-data feedbacks

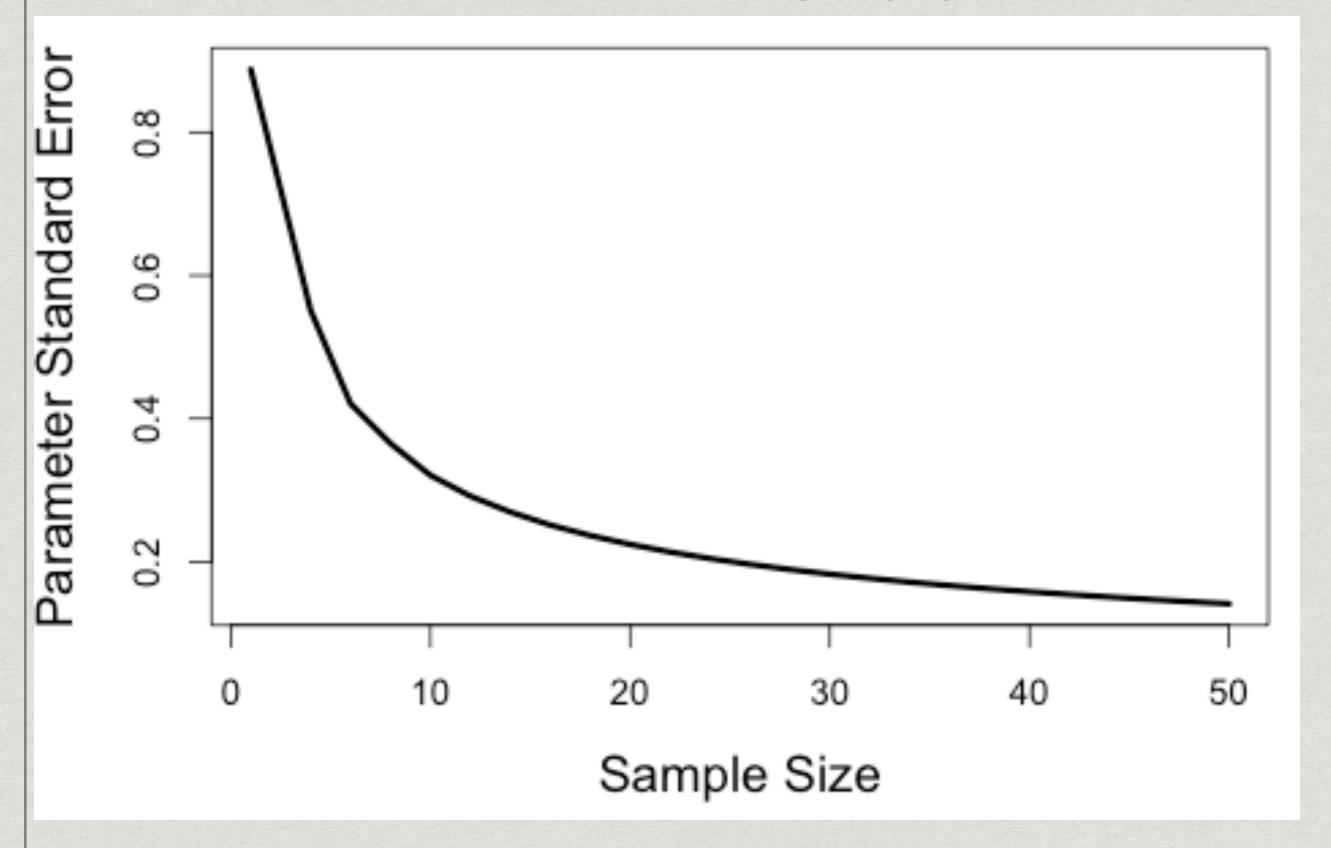
#### \* Power analysis

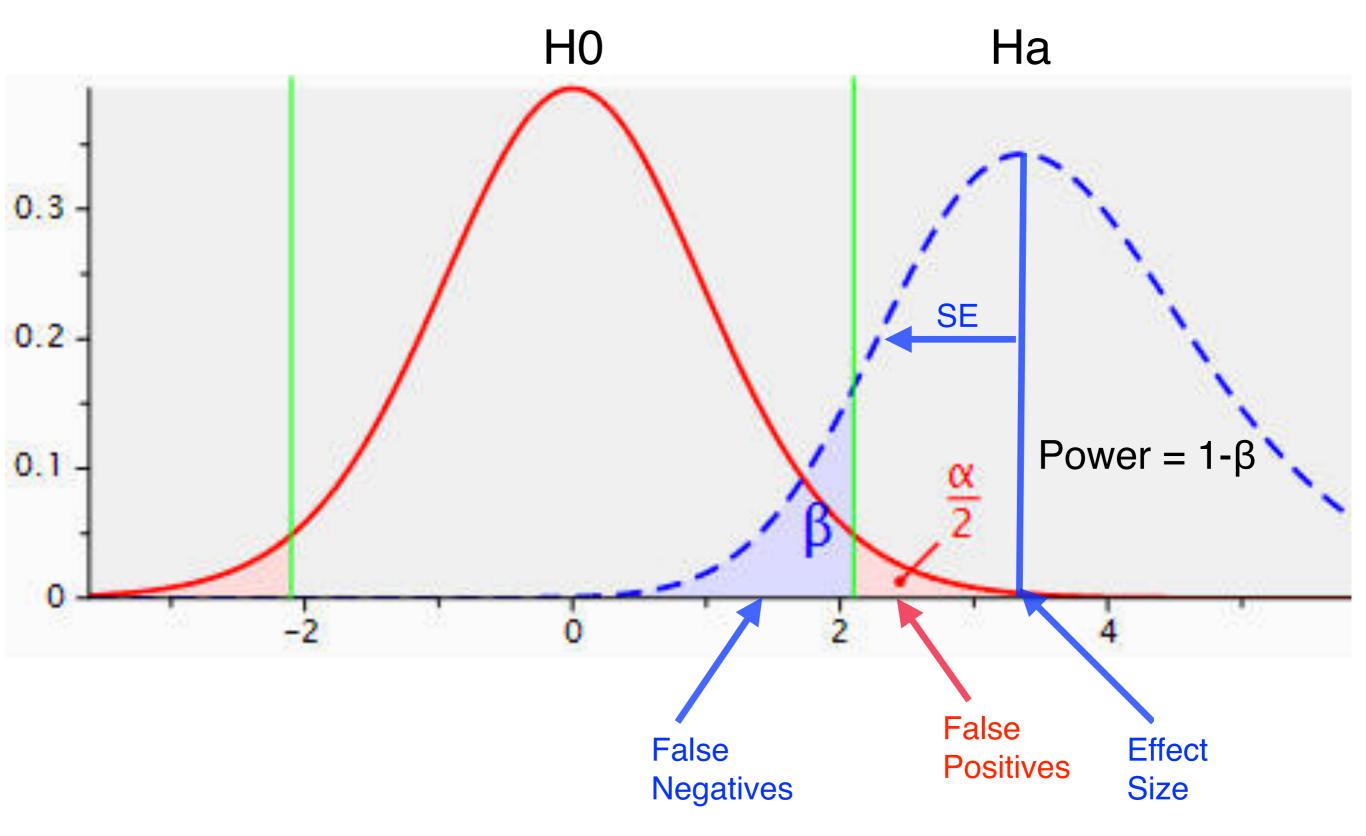
- \* Sample size needed to detect an effect size
- \* Minimum effect size detectable given a size

#### \* Observational design

- \* What do I need to measure?
- \* Where should I collect new data?
- \* How do I gain new info most efficiently?

## $SE \propto 1/sqrt(n)$



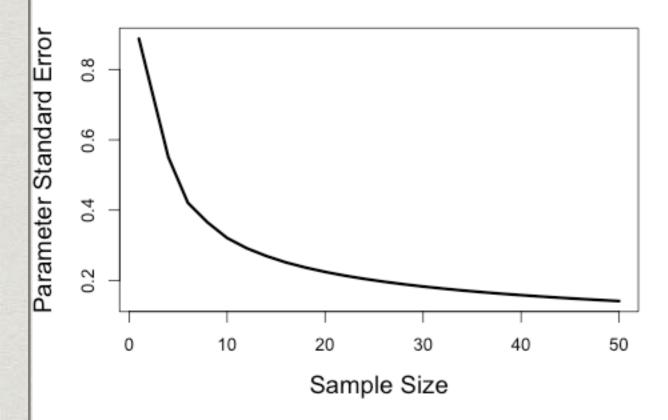


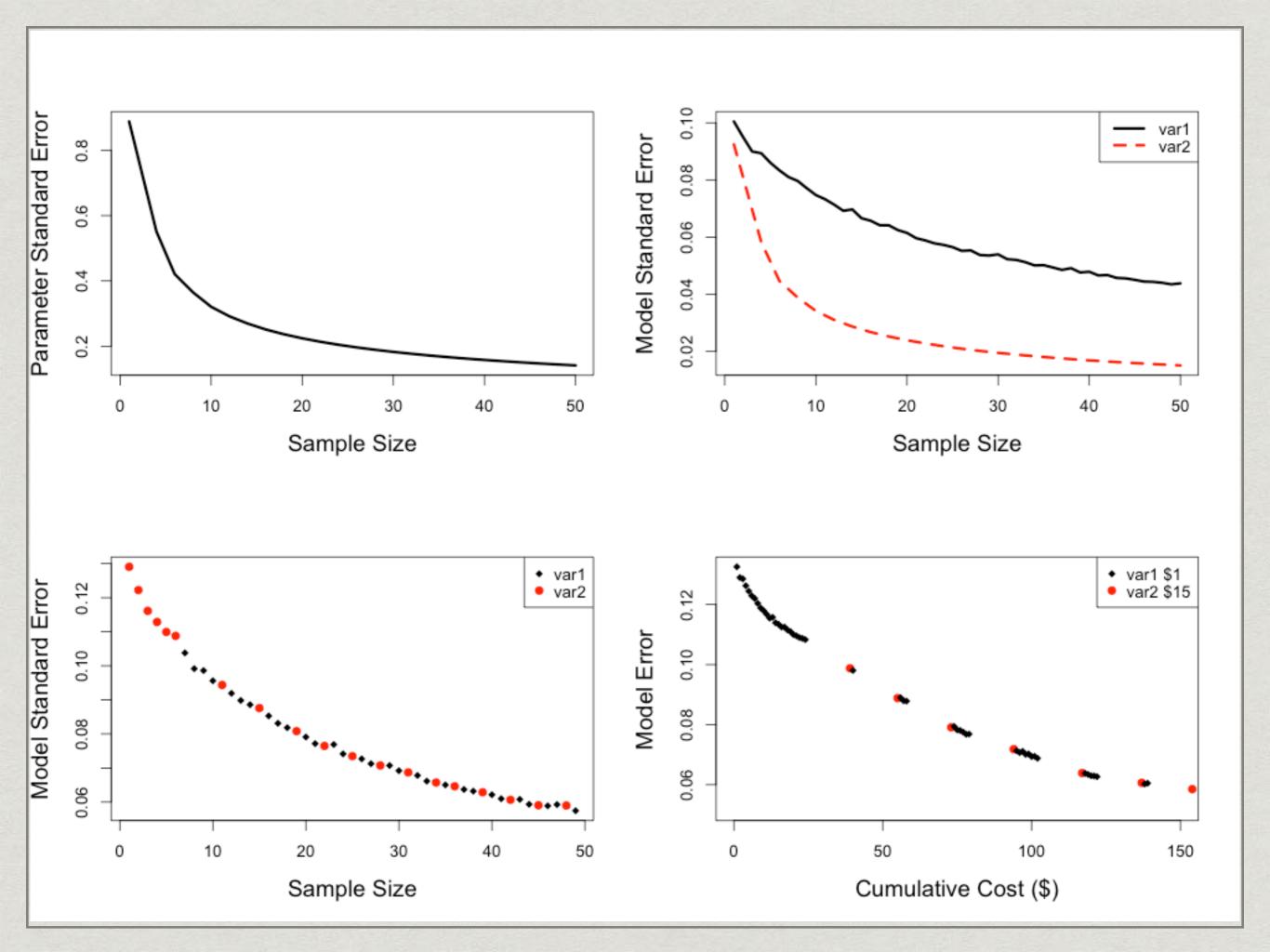
Power = f(effect size, SE)

#### Pseudo-data simulation

for(k in 1:M)
Draw random data of size N
Fit model
Save Parameters

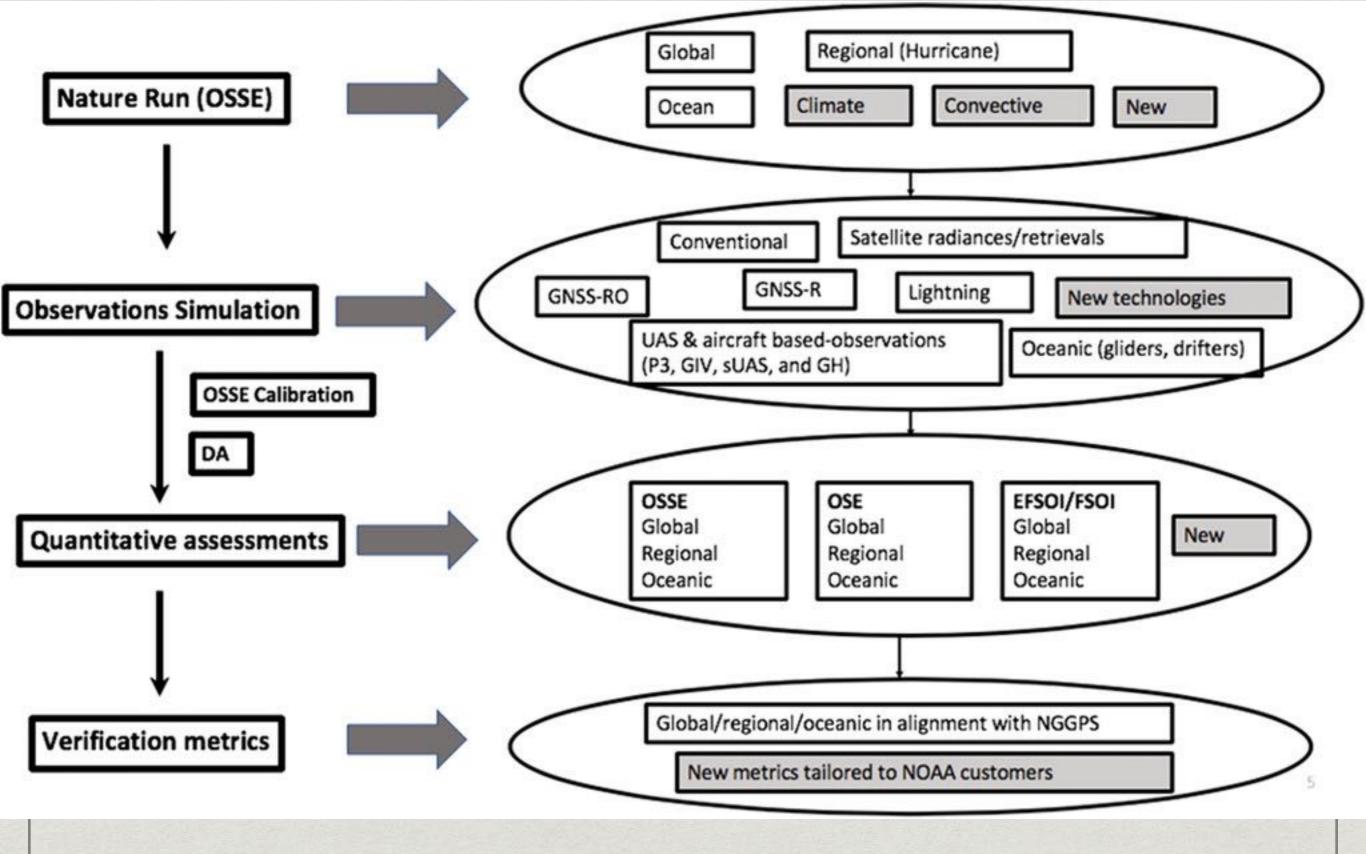
- \* Nonparameteric bootstrap: resample data
- \* Parameteric bootstrap: assume param, sim data
- \* Embed in overall loop over N or different effect sizes
- \* Summarize distribution





# Observing System Simulation Experiments

- \* Simulate "true" system
- \* Simulate pseudo-observations
- \* Assimilate pseudo-observations
- \* Assess impact on estimates
- Augment an existing network
  - Additional locations
  - New Sensors
- Common in Weather, Remote Sensing, Oceanography



Zeng et al 2020 "Use of Observing System Simulation Experiments in the United States" BAMS <a href="https://doi.org/10.1175/BAMS-D-19-0155.1">https://doi.org/10.1175/BAMS-D-19-0155.1</a>