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1. Needs and benefits:  Widespread environmental change is the defining challenge of
our time, with impacts occurring across all levels of society from individuals to humanity
as a whole1,2. We are facing continual, accelerating change, as demonstrated by the
recent pandemic, wildfires, droughts, and coral bleaching. Our ability to understand,
manage and conserve natural systems, and sustain economic growth in the 21st

century, requires a capacity to anticipate changes in the Earth System at a scale and
speed beyond what is currently possible.

Being able to predict changes in the biotic components of the Earth system is 
central to the predictability of the Earth system as a whole, the sustainable use of living 
resources, and the socio-economic benefits of improved prediction. In the National 
Academies “Next Generation Earth System Prediction” report, a top recommendation 
was to “Include More Components of the Earth System in S2S Forecast Models”, and 
specifically to advance prediction capabilities for soil-state and seasonal vegetation 
growth and aquatic and marine ecosystems3. The important role of vegetation and soil 
moisture in controlling the exchange of energy, water, and momentum between the land 
surface and the atmosphere is relatively well understood over short timescales4–6. Over 
longer timescales Earth system predictability can be enhanced by more effective 
modeling of the slow evolution and long memory of the biosphere7, exploiting land-
atmosphere interactions to better predict radiative forcing and GHG changes associated 
with land use and land cover change. Improved modeling, parameterization, and 
initialization of ecosystem processes will increase and extend model prediction skill for 
events such as droughts, heat waves, floods, monsoons, and storm formation8–12. 

The biosphere is the life support system of the planet and contributes an 
estimated $145 trillion annually to human well-being; twice the global GDP13. 
Socio-economic benefits of improved prediction affect any sector, community, system, 
or industry that have a biotic component14, for example: agriculture, forestry, fisheries, 
water resources management, tourism and recreation, disaster management, human 
health, energy, and infrastructure. Furthermore, it is clear that there are unmet 
management opportunities where improved prediction would lead to improved decision 
making15–17. For example, literature surveys found that 30-80% of natural resource and 
conservation management operations experienced unanticipated weather impacts, 
predominantly on sub-seasonal to interannual timescales18. Improved predictions, alone 
or combined with projections under alternative management scenarios, will allow society 
to anticipate challenges on decision-relevant timescales, to adapt to change, and to 
improve decisions at all scales, from individual citizens to organizations to nations.  

Improving prediction within the biosphere is not only urgent, but it is also timely 
and achievable. The capacity to generate and improve predictions is fueled by recent 
advances in sensor technologies, satellite-based observation systems (e.g. NASA’s 
Earth Observing System), genomic tools, community science initiatives, and shifts 
toward large-scale networked science (that leverage recent advances in physical, cyber 
and communications infrastructure) that now provide access to previously unimaginable 
volumes of near real-time environmental data. Standardized observatories, such as 
NSF’s National Ecological Observatory Network (NEON) and Ocean Observatories 
Initiative (OOI), and long-term monitoring data (e.g. USGS, NOAA, USDA) are 
particularly valuable in these efforts, both directly and for connecting high-volume 
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satellite data to process-level detail across scales. Increases in data volume, velocity, 
and openness are having a revolutionary impact on efforts to expand and formalize 
prediction for the biosphere. 

Increasing data availability has enabled novel, iterative predictions for the 
biosphere with the potential to directly address the socio-ecological challenges of the 
21st century19. By continually confronting short- to medium-term predictions with new 
observations, iterative prediction systems are a win-win that simultaneously provide 
more societally-relevant information on decision-relevant timescales while accelerating 
research and improving our fundamental understanding of predictability20. For example, 
real-time forecasting improves the process of research by forcing scientists to make 
specific, quantitative, and falsifiable predictions that are “pre-registered”21 and can be 
rapidly validated against out-of-sample (future) data. 

Beyond making useful predictions, our theoretical understanding of predictability 
has recently emerged as an important research area for the biosphere22–24. One key 
question asks which uncertainties dominate predictions on different timescales: how 
long do initial conditions matter, when do long-term climate scenario uncertainties take 
over, and which uncertainties (model structure, inherent stochasticity, environmental 
heterogeneity, parameter variability) dominate in between? The answers to these 
questions are likely to vary across systems and scales, and a comparative approach is 
necessary to understand the patterns to predictability in the biosphere19. Competing 
hypotheses consider the role of the physical environment, biotic interactions, biological 
traits, and evolutionary constraints. Similar questions exist about the transferability of 
forecast models across locations and study systems (e.g. how similar in structure and 
parameters are models for different harmful cyanobacteria blooms?). Understanding the 
patterns to predictability across the biosphere addresses discipline-spanning grand 
challenge questions in biology. Furthermore, it has a direct impact on practical science 
priorities by highlighting what monitoring data are most needed, when we need to model 
specific systems in more detail, or how we could structure more holistic/integrative 
models of general properties. 
 

2. Gaps and barriers: Although there is much to be gleaned from the theory and 
approaches used to predict the physical Earth system, the biosphere poses unique 
challenges that may require different solutions. Other parts of the Earth system 
(atmosphere, ocean, etc.) have well-defined governing equations based on fluid 
mechanics and thermodynamics. The biosphere has these too, but adds complexities 
across a whole cascade of scales from genomes to cells to organisms to ecosystems. 
Just one of the estimated 8.7 million species on Earth25 may contain gigabytes of 
information in its genome and we possess genomic data for a mere 0.04% of species. 
Furthermore, our ability to predict biological function at the cellular- or organismal-scale 
based on genomes is in its infancy and largely restricted to the bacteria. Because we 
remain far from being able to scale up to processes at the ecosystem- and 
biosphere-scale based on first-principles, we are strongly reliant on our (incomplete) 
understanding of emergent phenomena and empirical calibrations. This notorious 
messiness of biology does not preclude prediction, but leads to important challenges to 
how we generate predictions (a mix of semi-mechanistic, statistical, and machine 
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learning approaches) and how we study predictability (comparative approaches, 
numerical simulation, uncertainty analysis, scaling theory)24.   
 Ecological systems are tightly coupled to human systems and respond 
rapidly to human decisions. Furthermore, some predictions (e.g. fisheries) will have to 
account for the fact that humans will make different decisions depending on a forecast’s 
output, and those decisions can change the outcome of the prediction (similar to what is 
seen in economic forecasts). This coupled representation of ecosystem dynamics, 
human action, response, and outcome illuminates the challenges of predicting natural-
human system states and behaviors, but also opportunities to improve decision support 
and our understanding of human-natural system predictability. Predictions need to be 
better integrated into socio-economic benefit analyses such as ecosystem service 
valuation and value of information studies19. Earth system modeling is about putting the 
pieces together, and while predictability is complicated it can be improved by the 
coupling between the components. Models of this type must be capable of interrogating 
the feedback uncertainties and process dynamics, and provide “experimental worlds” 
where the impact of different policy interventions can be tested26.  
 Finally, compared to one-off analyses, iterative predictions have much higher 
requirements for reproducibility, robustness, computational efficiency, and 
automation. Successful forecasting systems for the biosphere will require sustained 
funding for the development and maintenance of models, tools, cyberinfrastructure, and 
for the technical training of the next generation of scientists in such methods. As noted 
earlier, these predictions also require uncertainty estimation and propagation, which 
requires more sophisticated analytical techniques, is more computationally intensive, 
and produces larger and more complex results that are more difficult to store, distribute, 
and communicate. In addition to these general forecasting challenges, some additional 
cyberinfrastructure challenges are unique to ecological predictions. For one, the 
diversity of study systems and associated predictive models in ecology means that 
ecological data vary in type, spatial and temporal scale, format, and distribution method. 
This heterogeneity poses methodological challenges (e.g. how to model relationships 
between variables of different type and scale) and cyberinfrastructure challenges (e.g. 
processing pipelines; data formats). 
 

3. Opportunities and activities:  
 

Opportunity 1 - Identify dominant uncertainties through synthesis: One knowledge 
gap that is critical, but at the same time actionable over the next ten years, is to focus 
efforts on improving our understanding of the relative contributions of different 
uncertainties to the predictability of the biosphere and coupled human-natural 
systems. Early on, the uncertainty in numerical weather prediction (NWP) was shown 
to be driven primarily by the unstable, chaotic nature of the atmosphere, and therefore 
forecast improvement required increasing the volume and precision of observations of 
the present state (i.e., initial conditions)27–29. This theoretical insight into predictability 
had profound implications on the design of models, monitoring efforts, and data 
assimilation systems. By contrast, while the biosphere and coupled human-natural 
systems are replete with nonlinearities there are few definitive examples of chaos30–32. 
Therefore diagnosing the predictability of these systems requires that additional 
uncertainties be quantified and analyzed: drivers, model parameters, model structure, 
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system heterogeneity (statistical random effects), and inherent stochasticity. Similar to 
NWP, which of these uncertainties dominate in which situations will have major impacts 
on how we monitor and model the biosphere, how we assimilate new information into 
our predictions, and how we make decisions under uncertainty. Although we can derive 
some basic expectations about the relative importance of each of these terms24, much 
of our understanding of predictability needs to be empirical. For example, while 
improved atmospheric forecasts at the subseasonal-to-seasonal and interannual-to- 
decadal timescales would improve many biological forecasts, the observation that many 
biological (and societal) processes are time-integrating and possess substantial 
memory means that it is not an a priori given that the current skill of atmospheric models 
is insufficient to produce societally-useful and scientifically-interesting biological 
predictions. The unfortunate reality is that existing analyses of predictability are largely 
incomplete, especially when it comes to the large-scale processes in Earth system 
models, with only a subset of uncertainties being considered in any given study, and 
multiple uncertainties frequently being convoluted (e.g. parameters, model structure, 
initial conditions)33–35. Complete uncertainty analyses have recently become possible 
at small scales36, but a robust partitioning of errors is labor-intensive and needs to be 
scaled up. This needs to be done not just for individual study systems, but also through 
databases and repositories - both virtual (data) and physical (samples) - that will allow 
for large-scale synthesis and comparative analyses of predictability across systems and 
scales. Such syntheses will tackle grand challenge scientific questions and have a 
revolutionary impact on our ability to understand, manage, and conserve the biosphere. 
 

Opportunity 2 - Build Community Cyberinfrastructure: Although some ecological 
forecasts run within fully-coupled Earth system models, many more are simpler to 
implement offline. Currently, ecological forecast systems are developed independently, 
leading to large redundancies that increase the time, costs, and learning curve needed 
to develop and operate these forecasts. Shared, community cyberinfrastructure would 
increase economies of scale and accessibility, making it easier for different groups 
to deploy and manage forecasts for many different ecological systems37. Forecast 
pipelines should be built on flexible, composable, and reproducible modules that 
can be deployed across modern distributed systems, and adhere to community-driven 
standards and unified development approaches that cover cases across a wide 
range of biological subdisciplines. Forecast inputs and outputs should also strive to be 
“FAIR”—Findable, Accessible, Interoperable, and Reusable— for both human 
users38 (e.g. help decision makers find and use forecasts) and “machine” users (e.g. 
automatically ingest new data)39. Key components include data ingest tools that can 
handle both data volume and heterogeneity, standards for forecast inputs, outputs, and 
metadata, public archives, and tools for data assimilation, uncertainty propagation, 
visualization, and dissemination. In some cases, tools and software for addressing 
these needs already exist37, though creating and maintaining forecasting pipelines that 
use these components still requires specialized training. Other forecasting challenges—
particularly those outlined in the previous sections—demand the development of new 
techniques and technologies that could be accelerated by a collective community 
platform. Importantly, the methodological and technological advances necessary for 
successful ecological forecasting systems may produce positive externalities in the 
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same way that comparable advances in weather forecasting have found applications far 
beyond atmospheric science.  
 

Opportunity 3 - Grow human and institutional capacity: One of the most critical, 
actionable opportunities to advance biosphere prediction is the need to strengthen 
and sustain human and institutional capacity. Although predictive approaches are 
routine in other Earth system sciences (e.g. NWP), they are relatively new to biology. 
Few undergraduates are exposed to the role of prediction and forecasting in research, 
resource management, policy-making and conservation of the biosphere. Few graduate 
programs offer explicit training in the concepts, tools, and techniques used by ecological 
forecasters, or in the management and decision science approaches that take 
advantage of this information, and there is a need to bring existing researchers and 
managers up to speed. 

Another aspect of capacity building revolves around the critical need to identify 
and engage stakeholders and end users in the process of developing and applying 
predictions. Forecasts are only useful if they are used.  One approach to maximize the 
utility of predictions is to employ co-production, the explicit partnering of producers and 
consumers through the life-cycle of forecast development.  Co-production requires 
communication, trust and time, and relies on partnerships that span federal, state, and 
local agencies, academia, industry, tribes, NGOs and their stakeholder communities 
including the public. 

There is also a critical need for interagency coordination and collaboration, 
similar to the U.S. Carbon Cycle Science Program/Carbon Cycle Interagency Working 
Group and its science community-led North American Carbon Program (NACP), to unite 
researchers, networks, and international government agencies around a central goal. 
Coordination minimizes the potential for unnecessary redundancy across agency 
efforts, helps identify and prioritize unmet needs, minimizes competition while 
maximizing complementarity, and improves the potential for successful technology 
transfer (e.g., from academia to decision-makers). Explicit consideration of coordination, 
roles and responsibilities provides a critical opportunity to address the current ‘gulf’ 
between research and operations. Many promising research-grade forecasts are not 
brought into operations because the agencies that support research frequently lack the 
mandate to operate forecasts. This is compounded by the dearth of support 
mechanisms (funding, coordination) to transfer forecasts to organizations (e.g., 
agencies, industry, or NGOs) that have operational authority and capabilities. 
 

Big Idea: Establish a National Center The theoretical, computational, social, and 
organizational challenges to making biosphere predictions are deeply intertwined. 
Tackling these challenges simultaneously in a coordinated manner will achieve far 
greater return on investment than a piecemeal approach focused on individual 
components. We recommend14 establishing a National Center focused on prediction 
and predictability in the biosphere. By coordinating cyberinfrastructure, stakeholder 
engagement, basic natural and social science research, and operations across 
agencies, academia, and industry we can achieve deep synergies and economies of 
scale that will drive rapid scientific advances and improved decision making. 
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