
1

February 11, 2020 CI Working Group Call

Attendees: Carl Boettiger, Rob Kooper, Bryce Mecum, Quinn Thomas, Jody Peters

Summary: In collaboration with the Theory Group on the Forecasting Standards call, this group
will continue to define what a forecast archive should look and what should go into archived
forecast packages that get saved on any of the archiving platforms. The next steps, which we
will discuss more on the Feb 25 Forecasting Standards call, are to use Carl Boettiger's simple
example as a starting point to test creating metadata for a couple of operational forecasts
(forecasts with NEON data would be good test cases as we prepare for the RCN meeting). We
will then want to compare across the metadata to see if all desired information to find forecasts
of interests (e.g., forecasts for specific species or locations or using certain models) and to be
able to compare across models is available.
Bryce Mecum offered to look for examples of how people have archived model simulations
rather than forecasts from the DataOne archive.
The group also talked about how to handle DOIs for forecasts. We discussed wanting to make
forecasts searchable with DOIS, but not needing DOIs for every daily updated forecast output.
Other options discussed were UUIDs that DataOne uses as well as the DOI versioning that
Zenodo employs. This will continue to be a topic of discussion.

Agenda:

1. Updates:
○ On Dec 16, Alexey submitted input to the NSF RFI on Data-Focused CI Needed

to Support Future Data-Intensive Science and Engineering Research
■ Here is the link to Dear Colleague Letter for the RFI:

https://www.nsf.gov/pubs/2020/nsf20015/nsf20015.pdf
○ EFI-RCN Boulder Meeting May 12-14

■ Everyone should apply! Deadline is this Friday, Feb 14. Here is the
website with info and the link to apply

2. Archiving Platforms - Want to get something pulled together before the EFI-RCN May
meeting. Here are ideas from previous calls.

○ Continue Slack conversation about archiving platforms
○ Develop a list of needs for platform(s)

■ How well does the platform support the guidelines for archiving
■ Long term viability. Forecast that won’t go away
■ Machine pushable/writeable. Automate workflow
■ Accommodate frequent updates (without creating unique DOIs each time)
■ Want it to be discoverable (e.g., new DOI issue)
■ Use this list of needs and how they relate to each platform would work for

the blog. Plus with the script examples

https://github.com/cboettig/forecast-standards/blob/master/logistic-metadata-example.md
https://github.com/cboettig/forecast-standards/blob/master/logistic-metadata-example.md
https://www.nsf.gov/pubs/2020/nsf20015/nsf20015.pdf
Alexey Shiklomanov
One thing that would be worth discussing is the relative importance of these different needs. We may find a perfect solution, but I strongly suspect there will be some trade-offs.

2

○ Have folks familiar with each platform OSF (Alexey), Zenodo (Ethan), DataONE
(Bryce/Matt) summarize how each platform fits the needs

○ Create blog post summarizing pros and cons
○ Throw together basic script to show example of automatic upload. Alexey could

put this together for OSF. Check with Ethan to see - he probably already has this
for Zenodo.

○ Discussion from 2-11-20 call
○ Carl: Risk getting sucked into goals for functions of different platforms and

helping people choose. Platforms have a lot more in common then they are
different. Our role is about what should a forecast archive look like on any of
these platforms.

■ Don’t want us to get hung up on the micro features of the platforms
○ What would go into an archive package?

■ Operationalize what you expect to do with the forecast that really matters.
■ Have an automated tool that gives a score between multiple forecasts
■ Have to work backward from 2 comparable forecasts. What would need

to be capture from both of them that is automated that makes them
comparable?

○ Ethan has developed code for automation creation of archives on Zenodo.
○ Defining standards and pointing people to resources. Example of one on one

platform.
○ Would love to see NEON based examples.
○ Goal going into May meeting is having some preliminary NEON forecasts - use

them as a way to workshop this archiving structure
○ Hackathon in mid-RCN years - would be an opportunity to develop tools that are

widely useable.
○ Go into the RCN meeting - we want to have an idea of what an archive package

would look like and wedge it into existing forecasts.
○ Provide a review of what that package would look like and try shoving some data

into it.
○ Ideas of what would go into forecast archive package

■ Metadata file
● Parameters that go into the model that the model needs to run the

forecast
● Descriptors of the forecast
● Class of model
● What date it was run (timestamp)
● Version of model
● If forecast is reproducible with containers
● Is data included and what kind of data? And what do the data go

into (model calibration - could have been done years ago; data
assimilated into model; data used to evaluate model when the
data comes in)

3

○ We are close to the Metadata. Now we need folks to wedge forecasts into these
Metadata

■ Are there things we need? Do we have the correct information/enough
information that we need?

■ Will need to iterate on real examples to help answer these questions.
○ Need to define the set of functions we need to run on the metadata
○ From Carl’s example - Output data is the Metadata that travels with it. His

example doesn’t have uncertainty included. Not sure if we have a good system
for uncertainty.

■ Would want it to be an attribute. List the uncertainty types included in
forecasts so people would know what you did

■ Could be an attribute on a table (one column that is point estimate, other
column is for interval, and third column is the type of interval). It’s
possible

■ As for EML and what can be done with Schema it is limitless. The hard
part is authoring the EML. The tools that Carl has been building has been
working on to generate EML automatically

■ Leveraging the EML tools and adapting is good.
■ In EML (XML Schema side) you can’t have things that are required vs

optional. Would need to create an R package to do this
■ Are there examples of how people have archived model simulations

rather than forecasts. There are 100,000 examples, so we could
probably find some examples

● Bryce can look at this and can send some examples if he finds
them

■ If R package or web form doesn’t provide an easy way to set up the XML,
people won’t add the complexity

■ Carl’s example is simple. But it points folks to how to interpret data file
that travels. Need to define use case for the forecasts. EML is a good
starting point for this. Discovery of the data is one example (want to know
the species or the location forecasting that has happened vs finding
forecasts that use a particular approach vs want computer to read EML
and re-run the forecast)

■ Need to in 30 years create the figure that weather forecasters can do now
- which is to show that our skills have gone up over time. Need the
metadata to do that in 30 years.

■ Identify infrastructure that is specific to forecasting, then show things such
as DOI is not what we want for each new iterative forecast.

■ Either we identify the problems and solutions or identify the problems and
find the people who can work on that problem.

■ Identify forecast-specific issues. Understand that some of the general CI
issues won’t be solved.

■ EML is not too far off from allowing us to have the metadata needed
about the forecasts

https://github.com/cboettig/forecast-standards/blob/master/logistic-metadata-example.md

4

■ Solving the DOI issue is important. Put this on the list of things to work
through. What is the best solution that is not burning through DOIs?

■ Are there other persistent identifiers?
● A group could mint their own
● Are there are examples where a DOI wasn’t an appropriate tool?

○ DataOne is in the million of identifier space. Lots of those
do use DOIs. The DOIs are the human - found identifier

○ UUID - probabilistically chosen random globally unique
identifier. This is an opaque identifier.

○ If you launch forecast for a system - that might get a DOI,
but every day’s forecasts would get the UUID

○ DataOne has this model: have a series of containers that
are named the same. Example: doing a forecast that
changes over time. Give one DOI that points to the
containers for the forecasts that may change. The raw
model output gets opaque identifiers. This fulfills the
demand of the user. But the problem is getting back to the
bytes people want. Bryce’s example - writing koala data
for a journal. Getting to the specific data/output/bytes that
need to be cited can be difficult

● Zenodo uses DOI versioning
○ Have 1 DOI which points to the main element. Then every

day have a new version of the dataset, so have a new DOI
for each day.

○ Zenodo has unlimited number of DOIs
○ But versioning in Zenodo is different from Bryce’s example

f subcomponents. Upload foreacsts have output files,
metadata, input files. Bundle all that into Zenodo and give
a DOI. Later using new data can re-run the forecast in
Zenodo and rebundle. If you want to refer to a particular
portion within the model you don’t have the UUID to find
the info.

○ Two things that might happen: 1) I am using the same
code, but the input data has changed. 2) Or perhaps the
input data hasn’t changed but the code has changed. At a
fine scale we don’t have the infrastructure or haven’t
thought of how to use the infrastructure to organize these
two types of situations.

○ Forecast unit - expect to have the same model and expect
to have new data coming in.

○ If you have a new/change the model then that would get a
new DOI

○ Do we define a forecast as all the occurrence of the model
and the window of data that goes into machine and

5

window of data that comes out? Or a subset of those
pieces?

○ Example: Forecast is to propagate the average of the data
into the future. As you get more data the forecast will
change

■ If download the data from NEON today and
download a month from today and run average
algorithm, it should produce the same result.

■ This is sort of a continuation of the data because
the model doesn’t change. If you change
parameters then you have changes and that would
be a new version

■ If you re-calibrate the model to a new dataset, then
you would relaunch the forecast and that would be
a new identifier.

○ What do we do for a continuous run of the models?
■ If the model equations haven’t changed and you

have been iteratively ingesting new data, then it is
the same forecast

■ Is there a right/wrong time to mint a DOI - this is a
different question, then can we describe what we
have done with enough provenance.

3. Input Standards - we didn’t talk about this today. The Outputs and Archives are higher

priority, but Jody is keeping this on the Agenda as a reminder to work on this.

