
Bayesian Hierarchical 
Models 



Nested data

• patients within several hospitals

• genes within a group of animals, or

• sites within counties within regions within 
countries

It is common for data to be nested: i.e., observations 
on subjects are organized by a hierarchy

Such data are often called hierarchical or multilevel

For example,



Why groups?
We are usually interested in these groupings/nested 
structures because the indicate where we think 
variability may come in.

Usually we need some replication within a group (or 
we won't be able to estimate the variance...) 

• For example: Plots, Blocks, Years, Individuals

• we often use this to account for a lack of 
independence between samples within a group



Why groups?
Accounting for this nesting/group structure can have a 
big impact on our inferences about what is going on in 
a system:



Two groups
The simplest type of multilevel data has 2 levels, in which

• one level consists of groups

• and the other consists of units within groups

In this case, we denote       as the data on the      unit 
within group   . 

yi,j ith

j

We want to explicitly model the variation between 
these in order to properly partition and identify the 
sources of randomness in our system.



Hierarchical model
The sampling model should reflect/acknowledge the 
hierarchy so that we may distinguish between

• within-group variability, and

• between-group variability

(within-group sampling variability)

(between-group sampling variability)

(prior distribution, “hyperprior”)

One typically uses the following hierarchical model, for 
                     , with      observations in each groupj = 1, . . . ,m nj

{Y1,j , . . . , Ynj ,j |✓j}
iid⇠ p(Y |✓j)

{✓1, . . . , ✓m|�} iid⇠ p(✓j |�)
� ⇠ p(�)



Variability accounting
It is important to recognize that the distributions        
           and            both represent sampling variability 
among populations of objects:
p(y|✓) p(✓|�)

•            represents variability among measurements 
within a group 

•            represents variability across groups

p(y|✓)

p(✓|�)

         represents information about a single unknown 
quantity
p(�)

These are both sampling distributions; the data are 
used to estimate    and   ; but         is not estimated✓ � p(�)



Hierarchical normal model
We use this to model the heterogeneity of means 
across several populations so that the within- and 
between-group sampling models are both normal:

Note that             only describes heterogeneity across 
group means, and not any heterogeneity in group-
specific variances

p(✓|�)

The within-group sampling variability     is assumed to 
be constant across groups

�2

(within-group model)

(between-group model)

✓j = (µj ,�
2), p(y|✓j) = N (µj ,�

2)

� = ( , ⌧2), p(✓j |�) = N ( , ⌧2)



Hierarchical diagram
( , ⌧2)

µ1 µ2 µm�1 µm

Y1 Y2 Ym�1 Ym

�2

· · ·

· · ·



Conditional independence

Conditional on                                       the random 
variables                        are independent with a 
distribution that depends only on      and 

{µ1, . . . , µm, , ⌧2,�2}
Y1,j , . . . , Ynj ,j

µj �2

but only indirectly 
through µj

( , ⌧2)

µ1 µ2 µm�1 µm

Y1 Y2 Ym�1 Ym

�2

· · ·

· · ·

The existence of a 
path from            to 
each      indicates that 
these parameters 
provide information 
about    

( , ⌧2)
Yj

Yj



Hierarchical normal model: 
priors

The “fixed” but unknown parameters in the models are  
          and      (these are shared among all the data). , ⌧2 �2

The most common prior choice would be the “semi-
conjugate” normal and Inverse-Gamma priors:

�2 ⇠ IG(⌫0/2, ⌫0�
2
0/2)

⌧2 ⇠ IG(⌘0/2, ⌘0⌧
2
0 /2)

 ⇠ N ( 0, �
2
0)

Then turn the Bayesian crank...

Same as putting a  
gamma prior on the  

precision instead! 



Example: Math scores in US public schools

Consider data that is part of the 2002 Educational 
Longitudinal Study (ELS), a survey of students from a 
large sample of schools in the United States.

The data consist of math scores of 10th grade students 
at 100 different urban public high schools with a (10th 
grade) enrollment of 400+ students.

The scores are based on a national exam, standardized 
to produce a nationwide mean of 50 and standard 
deviation of 10.



Example: the data

Scores for students within the same school plotted 
along a common vertical bar:
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Example: the data

The range of average scores (36, 65) is quite large

Extreme sample averages occur for schools with small 
sample sizes

This is a common relationship in hierarchical datasets
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Hierarchical diagram
( , ⌧2)

µ1 µ2 µm�1 µm

Y1 Y2 Ym�1 Ym

�2

· · ·

· · ·



Example: Posterior summaries

45 46 47 48 49 50

0.
0

0.
2

0.
4

0.
6

psi

D
en
si
ty

75 80 85 90 95
0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

sigma2

D
en
si
ty

10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

tau2

D
en
si
ty

 ̄ = 47.78 �̄ = 9.21 ⌧̄ = 4.97

• 95% of the scores within a school are within     
                        points of each other

• whereas, 95% of the average school scores are 
within                        points of each other

4⇥ 9.21 ⇡ 37

4⇥ 4.97 ⇡ 20



Example: Shrinkage

One of the motivations behind hierarchical modeling is 
that information can be shared across groups

This effect is called shrinkage.

As a result, the expected value of      is pulled a bit 
from      towards     by an amount depending upon

µj

ȳj nj 

Conditional on                and the data, the expected 
value of       is a weighted average of         and           *

 , ⌧2,�2

µj ȳj  

E{µj |yj , , ⌧2,�2} =
ȳjnj/�2 +  /⌧2
nj/�2 + 1/⌧2

* Note: we get this formula assuming the normal model with the semi-conjugate priors



Example: Shrinkage

Consider the relationship between      andȳj

for                      obtained in via our MCMC methodj = 1, . . . ,m
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Notice that the relationship 
follows a line with a slope 
that is less than one, 
indicating that high values 
of      correspond to 
slightly less high values of             
___, and vice-versa for low 
values

ȳj

µ̄j



Example: Shrinkage
It is also interesting to observe the shrinkage as a 
function of the group-specific sample size
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)[o
] Groups with low sample 
sizes get shrunk the 
most, where as groups 
with large sample sizes 
hardly get shrunk at all

This makes sense:

The larger the sample size the more information we 
have for that group, and the less information we need 
to borrow from the rest of the population



Hierarchical binomial model
Another commonly used hierarchical model is the 
Beta-binomial model, where

Yj ⇠ Bin(nj , ✓j)
✓j ⇠ Beta(↵,�)

(↵,�) ⇠ p(↵,�)

Conditional on     and     the posterior conditional for  
     is the familiar Beta distribution

↵ �
✓j

✓j |Yj , ↵, � ⇠ Beta(↵ + yj , � + nj � yj)

This should look familiar! 



Hierarchical diagram

Y1 Y2 Ym�1 Ym

· · ·

· · ·

(↵,�)

✓1 ✓2 ✓m�1 ✓m

As usual, we treat                    as knownn1, . . . , nm



Hyperprior
Unfortunately, there is no (semi-) conjugate prior for      
    and ↵ �

However, it is possible to set up a non-informative 
hyperprior that is dominated by the likelihood and 
yields a proper posterior distribution which leads to a 
convenient sampling method:

p(↵,�) / (↵ + �)�5/2

Using JAGS/rjags, however, you can choose whatever, as 
long as the priors are restricted to values   0. ≥



Example: risk of tumors in a group of rats

In the evaluation of drugs for possible clinical 
application, studies are routinely performed on rodents

In a particular study, the aim is to estimate the 
probability of a tumor in a population of female rats 
“F344” that receive a zero-dose of the drug (control 
group)

The data show that 4/14 rats developed endometrial 
stromal polyps (a kind of tumor)

Typically, the mean and standard deviation of underlying 
tumor risks are not available to form a prior 



Example: prior data

Rather, historical data are available on previous 
experiments on similar groups of rats
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Tarone (1982) provides data on the observations of 
tumor incidence in 70 groups of rats



Example: Bayesian analysis

We model the   rat tumor data with the 
hierarchical Beta-binomial sampling model + joint prior

m = 71

ESS = 340

ESS = 347
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First we 
must obtain 
samples from 
the marginal 
posterior of 
(↵,�)



Example: The posterior marginal

Once we have determined that the mixing is good, and 
we think the chain has achieved stationarity we can 
inspect the marginal posterior in a number of ways
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On the original scale
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Example: Rat group F344

We can examine the posterior distribution for our 
71st rat group, and compare it to the population mean 
of tumor rates in the 70 “prior” rat groups
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• model data which are nested or have a natural 
hierarchy

• pool information about groups of similar 
populations so that smaller groups may borrow 
information from larger ones (i.e., shrinkage)

• provide an efficient way of using “prior data” in 
an appropriate way

We have seen how Bayesian hierarchical models may 
be used to:  



Building an 
Hierarchical model

1. Always start simple and add complexity

2. Think about at what levels you expect 
observations to "group" or where the variability 
and randomness comes from  

3. Use your posterior samples carefully to obtain 
inferences for the level of your hierarchy that 
you're most interested in. 

When you build a HM remember:

But what about forecasting?!?!?



Example: Biomass by Block and Time

Note that the following code is illustrative and does not necessarily represent exact JAGS syntax



Model 1: Global Mean

model{ 
## priors 
mu ~ dnorm(0, 0.001)  
sigma ~ dgamma(0.001, 0.001) 

## the likelihood 
## remember to loop over all obs! 
for(t in 1:nt){ ## time 
for(b in 1:nb){ ## blocks 
for(i in 1:nrep){ ## obs in a block 
x[t,b,i] ~ dnorm(mu, sigma) 

} 
} 

} 
}

Xi
iid⇠ N (µ,�2)

<latexit sha1_base64="m4w+RUT2Hj57o4bRD7ycfIqizRc="></latexit>



Model 1: Global Mean



Model 2: Time Varying Mean

model{ 
## priors 
sigma ~ dgamma(0.001, 0.001) 

## hyperpriors 
mu ~ dnorm(0, 0.001)  
tau ~ dgamma(0.001, 0.001) 

## the likelihood 
## remember to loop over all obs! 
for(t in 1:nt){ ## time 
alpha.t[t] ~ dnorm(mu, tau) ## random draw for each time 
for(b in 1:nb){ ## blocks 
for(i in 1:nrep){ ## obs in a block 
x[t,b,i] ~ dnorm(alpha.t[t], sigma) ## time dept alpha 

} 
} 

} 
}

Xi,t
iid⇠ N (↵t,�

2)

↵t
iid⇠ N (µ, ⌧2)



Model 2: Time Varying Mean



Model 3: Grouping by Block

model{ 
## priors 
sigma ~ dgamma(0.001, 0.001) 

## hyperpriors 
mu ~ dnorm(0, 0.001)  
tauB ~ dgamma(0.001, 0.001) 

## the likelihood 
## remember to loop over all obs! 
for(b in 1:nb){ ## blocks 
alpha.b[b] ~ dnorm(mu, tauB) ## random draw for each block 
for(t in 1:nt){ ## time 
for(i in 1:nrep){ ## obs in a block 
x[t,b,i] ~ dnorm(alpha.B[b], sigma) ## block dept alpha 

} 
} 

} 
}

Xi,b
iid⇠ N (↵b,�

2)

↵b
iid⇠ N (µ, ⌧2b )



Model 3: Grouping by Block



Model 4: Grouping by Block and Time!
Xi,t

iid⇠ N (↵b + ↵t,�
2)

↵b
iid⇠ N (µ, ⌧2b )

↵t
iid⇠ N (0, ⌧2t )

Model 5: Grouping by Block and Time + trend!!

Xi,t
iid⇠ N (↵b + ↵t + �t,�2)

↵b
iid⇠ N (µ, ⌧2b )

↵t
iid⇠ N (0, ⌧2t )



This process can go on to infinity…

…so remember models represent hypotheses… 

1. The proper accounting of uncertainty can be just 
as important for making valid inference from your 
model as the process model and covariates

2. BHM allows you to take into account unmeasured 
covariates/processes

3. But have your hypotheses worked out before you 
do extensive model building — don’t go fishing!





Posterior inference
The full set of unknown quantities in our system 
include the group-specific means                     , the 
within-group sampling variability      and the mean and 
variance            of the population group-specific means

�2

( , ⌧2)

{µ1, . . . , µm}

GS proceeds by iteratively sampling each parameter 
from its full conditional distribution

Posterior inference for these parameters can be made 
by Gibbs Sampling (GS) which approximates the joint 
posterior distribution
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A hyperprior choice
A reasonable choice of diffuse hyperprior for the Beta-
binomial hierarchical model is uniform on 
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A “change of variables” shows that this implies the 
following prior on the original scale

p(↵,�) / (↵ + �)�5/2

There are many other possibilities. 



A hyperprior choice

It may be shown that it gives a “roughly uniform” prior 
distribution to the log standard deviation of the 
resulting                            sampling model
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It may also be shown that the posterior marginal

is proper with this choice as long as                     for 
at least one experiment
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