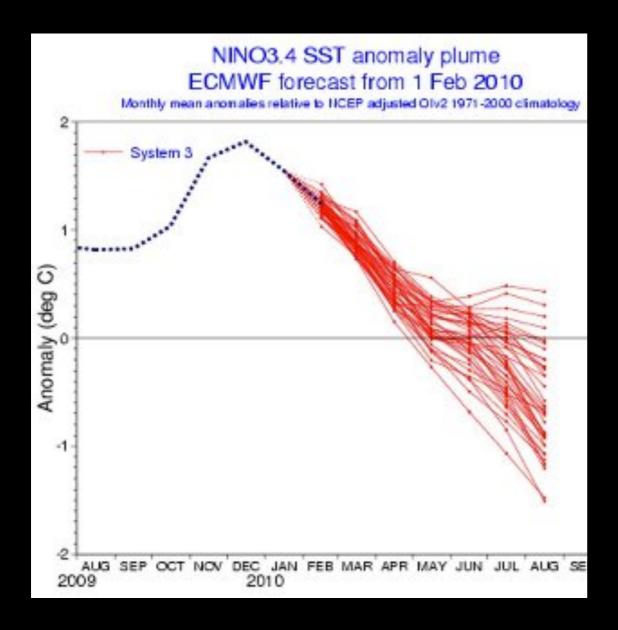
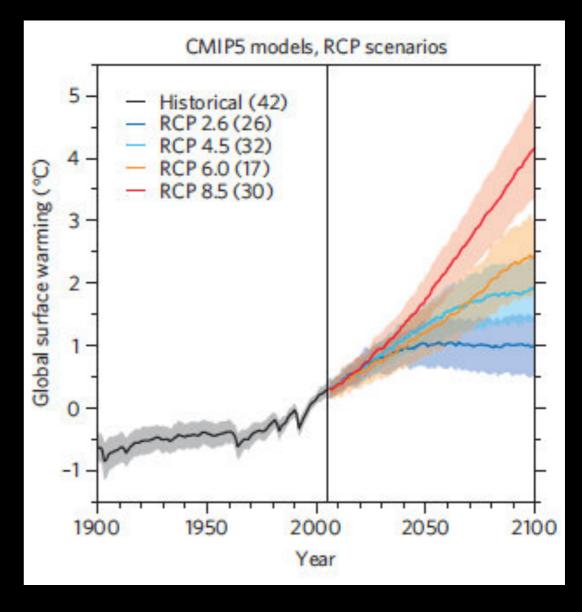
PROJECTIONS & DECISION SUPPORT


Lecture 12


PREDICTION

PROJECTION

"PROBABILISTIC STATEMENT
THAT SOMETHING WILL HAPPEN
IN THE FUTURE BASED ON WHAT
IS KNOWN TODAY"

SCENARIOS

Set of plausible **storylines**.

"Futures that could be" that capture key uncertainties

Not probabilistic, don't average over!

Decision alternatives

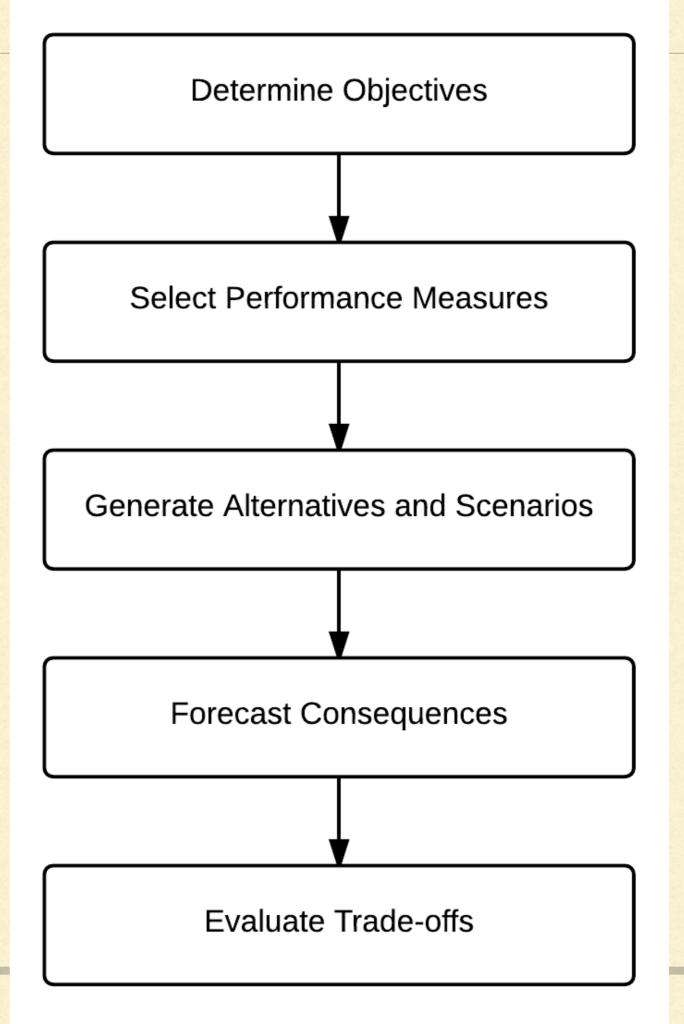
A framework for addressing low probability events war games, unknown unknowns, & black swans

Peterson et al 2003 Cons Bio

High Jncertai

Adaptive Management

Scenario Planning


Optimal Control

Hedging

Controllable Uncontrollable Controllability

DECISION SUPPORT

Structured Decision Making

CONSEQUENCETABLE

Alternatives

Attribute

Unit Energy Cost
GHG Emissions

Local Air Emissions Land Area Aquatic Area

Construction Jobs

Permanent Jobs

Noise

Visual Impacts

Food Harvesting Areas Sustainability / Innovation

Sustainability / Innovation

<u>Units</u>

\$/MWh

kilotons/yr CO2e tons/yr (PM10)

m2 (000)

m2 (000)

Person-years

FT equivalent

Weighted Average Scale (0=Best, 10=Worst)
Weighted Average Scale (0=Best, 10=Worst)
Weighted Average Scale (0=Best, 10=Worst)
Weighted Average Scale (10=Best, 0=Worst)

* Dependable Peak Provided By Renewables

Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alter
Name 1	Name 2	Name 3	Name 4	Name 5	Nam
149	114	110	124	108	
31	8	8	16	8	
16	17	21	9	24	
29.7	16.8	4.6	19.6	3.1	
8	24	-	35	20	
75	119	105	96	119	
49	81	83	76	84	
6.7	3.1	3.7	3.6	3.9	
1.5	2.2	2.8	1.4	2.2	
1.5	0.9	0.5	1.4	0.2	
-	0.3	0.5	0.7	0.3	
12%	22%	23%	12%	25%	

Objective

Performance Measure

Consequences

STAKEHOLDER WORKSHOPS

- Should engage a diverse group of stakeholders
 - Need for multiple points of view when considering complex environmental issues
- Allows people to step away from entrenched positions and identify positive futures
- Biggest trap is the inability of participants to perceive their own assumptions and the potential consequences of being wrong

OBJECTIVES

- Summarize something that matters to the stakeholders (e.g. fisheries revenue)
- Inclusion validates that an objective <u>has</u> value, but stakeholders may disagree on how much
- Not assigned weights
- Desired direction of change (not goal/threshold)
- Context-specific, not statements about universal values

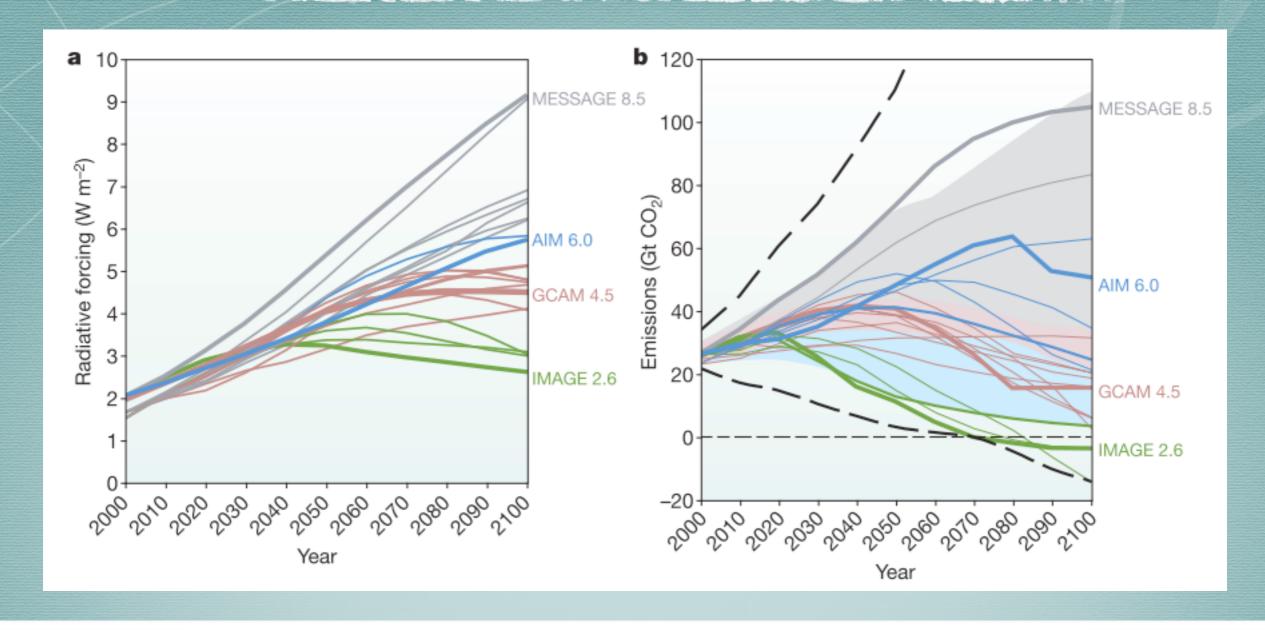
PERFORMANCE MEASURES

- Quantify objectives
 - Natural (e.g. carbon storage MgC/ha)
 - Proxy (e.g. habitat quality)
 - Constructed measures (I-I0), defined impact scales
- Natural units, don't have to monetize
- All values for a single performance measure (row) need to be calculated the same way with the same assumptions

ALTERNATIVES

- Any decision is only as good as the set of alternatives considered
- Search for win-win alternatives: iterative, hybridization
- How many?
 - Initial: computational, financial, time limits
 - Stakeholders: 4-12
 - Decision: 3-4

Even numbers reduce anchoring on middle


Unbiased, informative names

COGNITIVE BIASES

- Anchoring & adjustment: reference to initial (status quo)
 - Bookend strategies
- Representativeness (similarity; misweight disconfirming/irrelevant)
- Availability (giving more weight to recent examples)
- Sunk cost
- Groupthink: premature consensus

ALTERNATIVE CRITERIA

- Address the same problem
- Evaluated over the same time
- Same level of detail
- Same assumptions and performance metrics
- Mutually exclusive
- Able to drive forecast models

Table 1	The four RCPs				
Name	Radiative forcing	Concentration (p.p.m.)	Pathway	Model providing RCP*	Reference
RCP8.5	$> 8.5 \mathrm{W m^{-2}}$ in 2100	>1,370 CO ₂ -equiv. in 2100	Rising	MESSAGE	55,56
RCP6.0	\sim 6 W m $^{-2}$ at stabilization after 2100	~850 CO ₂ -equiv. (at stabilization after 2100)	Stabilization without overshoot	AIM	57,58
RCP4.5	\sim 4.5 W m $^{-2}$ at stabilization after 2100	\sim 650 CO ₂ -equiv. (at stabilization after 2100)	Stabilization without overshoot	GCAM	48,59
RCP2.6	Peak at \sim 3 W m $^{-2}$ before 2100 and then declines	Peak at \sim 490 CO $_2$ -equiv. before 2100 and then declines	Peak and decline	IMAGE	60,61

^{*} MESSAGE, Model for Energy Supply Strategy Alternatives and their General Environmental Impact, International Institute for Applied Systems Analysis, Austria; AIM, Asia-Pacific Integrated Model, National Institute for Environmental Studies, Japan; GCAM, Global Change Assessment Model, Pacific Northwest National Laboratory, USA (previously referred to as MiniCAM); IMAGE, Integrated Model to Assess the Global Environment, Netherlands Environmental Assessment Agency, The Netherlands.

ESTIMATING CONSEQUENCES

- Ecological Forecasting!
- First pass: Expert elicitation, literature, Fermi estimation
- Focus on terms that affect the outcome of the decision
 - Uncertainty analysis
 - Reducible vs irreducible uncertainties

VALUE OF INFORMATION

- "When does the addition of more information contribute to decision-making so that the benefit of obtaining this information exceeds the expense of collecting and processing it?"
- Expected additional benefit from additional information, relative to what could be expected without that information
- Delaying a decision to obtain more information doesn't always lead to different or better decisions

REPORTING UNCERTAINTIES

- Difference between common and technical language
- Humans do not innately understand probability
 - But are accustomed to dealing with risk
- Report more than mean, but not piles of stats
 - Cl interpreted as equal probability
 - multiple framings: 0.05% vs I in 20
 - low probabilities are ignored, focused on outcome

FRAMING UNCERTAINTIES

- Reference baselines
 - but losses and gains not perceived equally
- Downside reporting: worst plausible case
- Exceedance probability

MANAGING RISK

- Precautionary Alternatives
 - but can't be precautionary for all objectives
- Robust Alternatives
- Adaptive Alternatives
 - Iterative forecasting
- All come with a cost!

CONSEQUENCETABLE

Alternatives

Attribute

Unit Energy Cost
GHG Emissions

Local Air Emissions Land Area Aquatic Area

Construction Jobs

Permanent Jobs

Noise

Visual Impacts

Food Harvesting Areas Sustainability / Innovation

Sustainability / Innovation

<u>Units</u>

\$/MWh

kilotons/yr CO2e tons/yr (PM10)

m2 (000)

m2 (000)

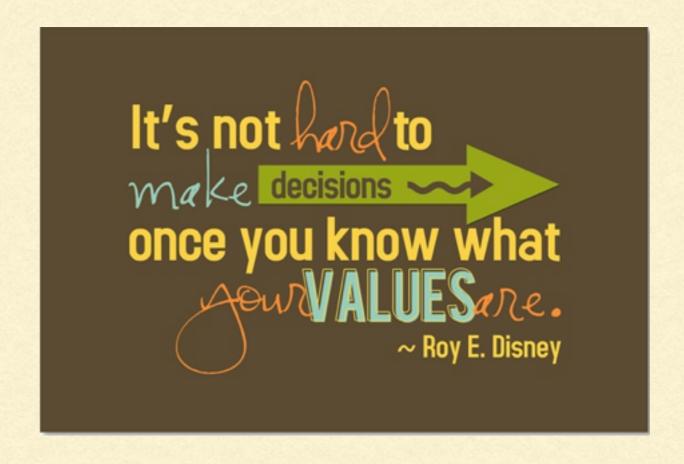
Person-years

FT equivalent

Weighted Average Scale (0=Best, 10=Worst)
Weighted Average Scale (0=Best, 10=Worst)
Weighted Average Scale (0=Best, 10=Worst)
Weighted Average Scale (10=Best, 0=Worst)

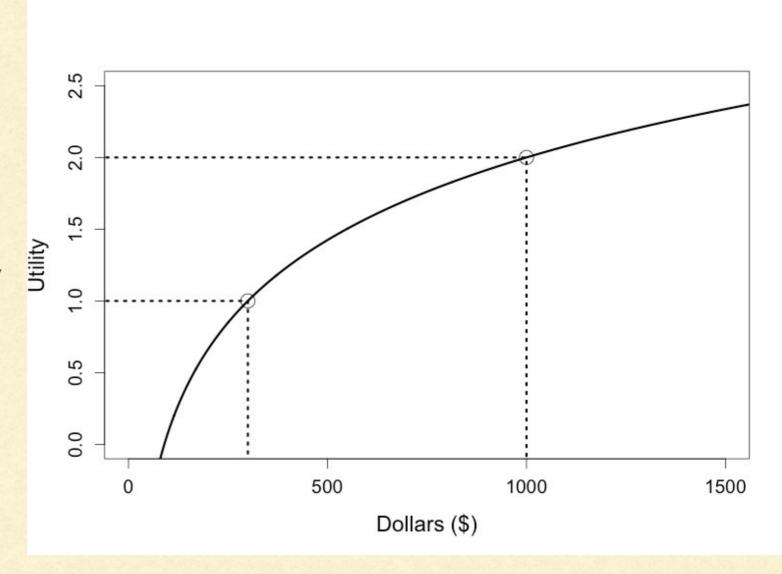
* Dependable Peak Provided By Renewables

Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alter
Name 1	Name 2	Name 3	Name 4	Name 5	Nam
149	114	110	124	108	
31	8	8	16	8	
16	17	21	9	24	
29.7	16.8	4.6	19.6	3.1	
8	24	-	35	20	
75	119	105	96	119	
49	81	83	76	84	
6.7	3.1	3.7	3.6	3.9	
1.5	2.2	2.8	1.4	2.2	
1.5	0.9	0.5	1.4	0.2	
-	0.3	0.5	0.7	0.3	
12%	22%	23%	12%	25%	

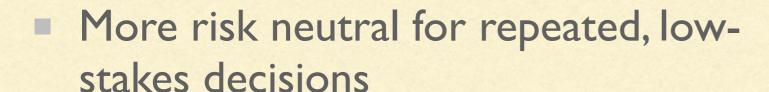

Objective

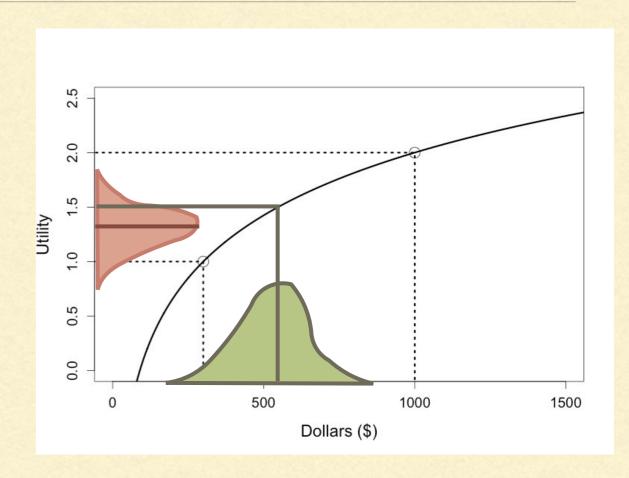
Performance Measure

Consequences


VALUES

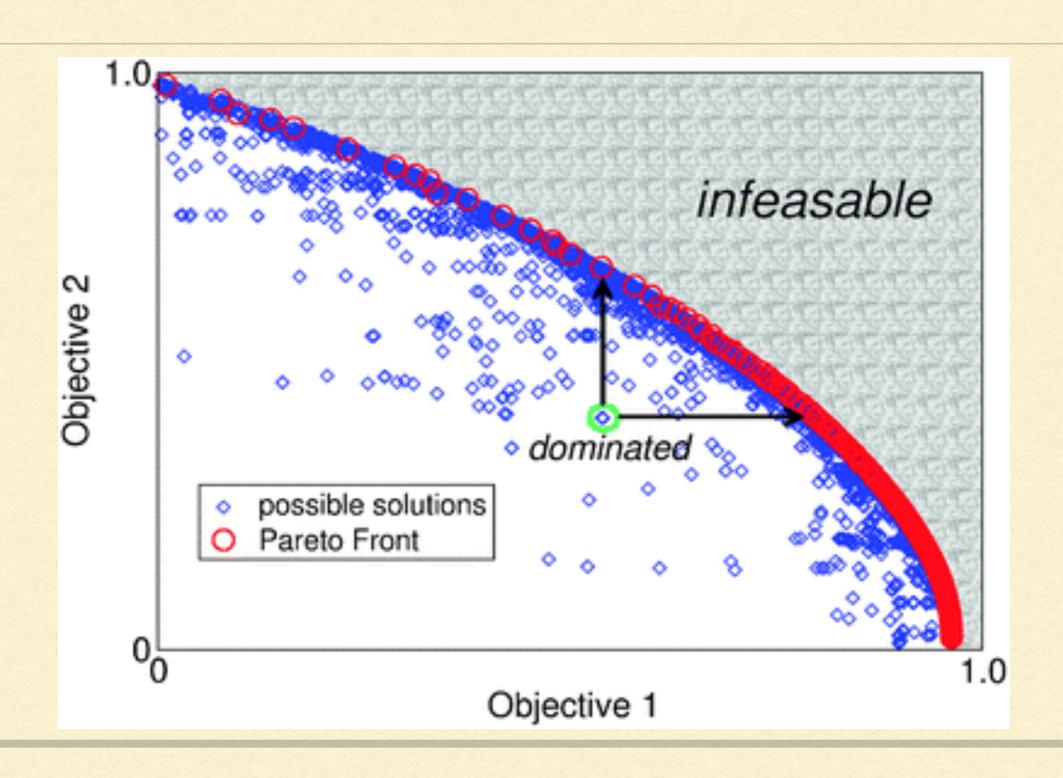
- Consequence table organizes information
- Decisions are about values
 - beliefs
 - priorities & preferences
 - tolerance for risk
 - time discount


UTILITY


- Cumulative value increases
- Marginal value decreases
- Maximum Willingness to Pay
- Demand = Marginal MWTP
- Eliciting indifference

RISKTOLERANCE

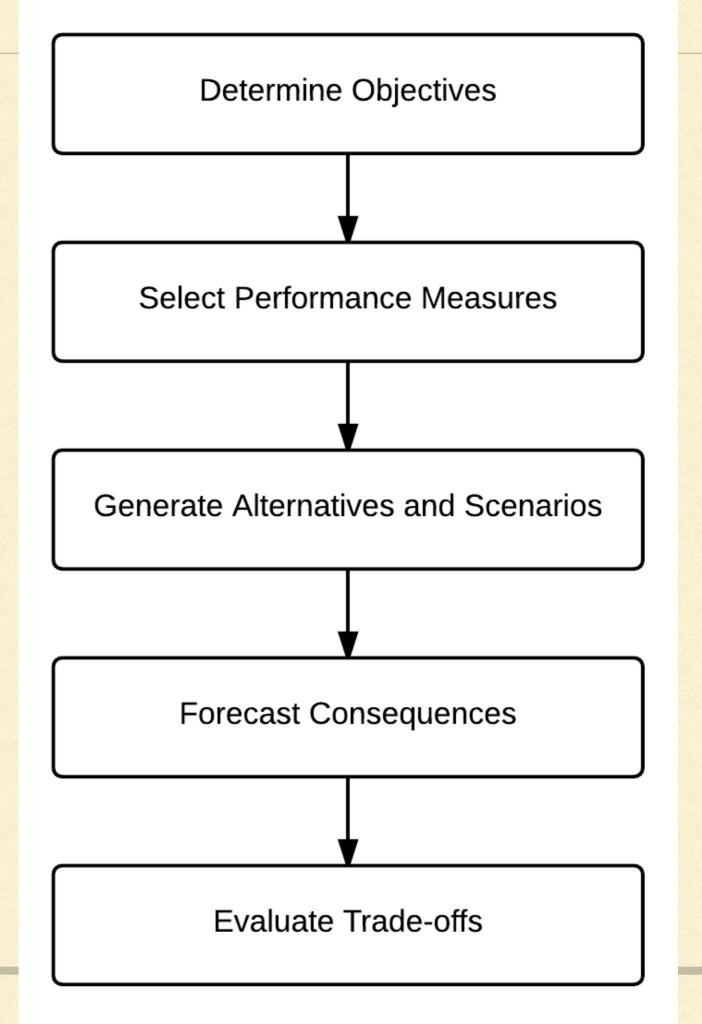
- Losses hurt more than gains
- Concave = risk adverse
- $\blacksquare E[U(x)] < U(E[x])$
- E[U(x)] declines with increasing uncertainty


TRADE-OFFS

- If no clear winner, goal is to eliminate dominated Alternatives and insensitive Performance Measures
- Refine understanding of key trade-offs
- Strictly vs practically dominated
 - Not based on CI!!
- By hand for small n
- No regrets actions

<u>Attribute</u>	<u>Units</u>
Unit Energy Cost	\$/MVVh
GHG Emissions	kilotons/yr CO2e
Local Air Emissions	tons/yr (PM10)
Land Area	m2 (000)
Aquatic Area	m2 (000)
Construction Jobs	Person-years
Permanent Jobs	FT equivalent
Noise	Weighted Average Scale (0=Best, 10=Worst)
Visual Impacts	Weighted Average Scale (0=Best, 10=Worst)
Food Harvesting Areas	Weighted Average Scale (0=Best, 10=Worst)
Sustainability / Innovation	Weighted Average Scale (10=Best, 0=Worst)
Sustainability / Innovation	** Dependable Peak Provided By Renewables

Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alt
Name 1	Name 2	Name 3	Name 4	Na
149	114	110	124	
31	8	8	16	
16	17	21	9	
29.7	16.8	4.6	19.6	
8	24	-	35	
75	119	105	96	
49	81	83	76	
6.7	3.1	3.7	3.6	
1.5	2.2	2.8	1.4	
1.5	0.9	0.5	1.4	
-	0.3	0.5	0.7	
12%	22%	23%	12%	


PARETO OPTIMIZATION

WEIGHTING OBJECTIVES

- Only done AT END: post winnowing, data in hand
- Done at individual level: Jensen's Inequality; How trade-offs perceived
- Swing weighting, ranking (best=100) vs Utility
- Sensitivity & Critical value analysis
 - How much would Consequence have to change?
 - Probability of exceeding threshold?

DECISION SUPPORT

