Announcements

- Today's reading Dietze Chapter 2 "From Models to Data"
- # Hands-on Activity 1 due 2/4
- Wednesday 2/6 Discussion "Predictability"
 - Petchey et al. 2015
 - Optional: Dietze 2017 Ecol Appl.
- Friday 2/8 reading: Ch 3 Data
 - Optional: <u>http://www.dataone.org/best-practices</u> Primer

From Models to Forecasts

Lecture 2

1/29/16

How Theory is Taught

Logistic Growth

Observed vs. Modeled Moose Density Linear Scale

Vere

Dietze 2017 "Ecological Forecasting" Princeton University Press

sd = 0.03

sd = 0.001

Think Distributions !!

- What is a random variable
- What is a probability distribution
- Common distributions and their representation in R

Probability distributions

What is a random variable?

- "a variable that can take on more than one value, in
 which the values are
 determined by
 probabilities"
- Does not have a single,fixed value

Coin Flips

What is a probability distribution?

A function that assigns a probability to a random variable $P(X = x_k) = p_k$ P(X = 3) = 1/6

given:

 $0 \le p_k \le 1$

Discrete distributions

Continuous distributions

Absent: beta, binomial, gamma, exponential, Laplace, Pareto, Bernoulli, geometric, hypergeometric, Wishart

uniform	Erlang	uchy
	Weibull	1
logN Poisson		- million
ni-Sq	36	
Normal	Gumbel	1

Drawing random numbers

n = 1

Can we forecast ecology like we forecast weather?

HOW DO WE MEASURE PREDICTABILITY?

Time

Dietze 2017 Ecological Applications

WHAT CAUSES VAR TO INCREASE WITH TIME?

INTERNAL STABILITY

WEATHER FORECASTING: AN INITIAL CONDITIONS PROBLEM

Slingo & Palmer. 2011. Phil. Trans. R. Soc. A

INTERNAL STABILITY

All other terms grow linearly

EXOGENOUS STABILITY

- Predictable if low sensitivity or low uncertainty
- Anova vs Regression design: <u>How much</u> does X affect Y?
- Var[x] also needs to be forecast
 - Different X for forecast than explain?
 - Not in model select, over complex
 - Rel. importance increases with time
- Endogenous (DD) vs Exogenous (DI) continuum

PARAMETER ERROR

PROCESS ERROR

- Inherent stochasticity (irreducible)
- Structural uncertainty
- Heterogeneity & variability
 - need to accommodate, even if can't explain

COV & SCALING

- At large scales, average over drivers (X), heterogeneity
 (α), & variability (ε)
 - Internal stability (Y) increases in importance
 - Scaling very dependent on spatial and temporal auto- & cross-correlation

$$\sum \sum \frac{\partial f}{\partial X_i} \frac{\partial f}{\partial X_j} COV[X_i, X_j]$$

Year

Willow Creek, Net Carbon Flux

Dietze 2017 Ecological Applications

NATURE OF THE PREDICTION PROBLEM ...

Theory

- What drives dynamics?
- Generality across processes and locations

stabilitv uncert

= INTERNAL + EXTERNAL + I

Practice

- What can we predict?
- How to tackle new systems

Methods

- What to measure
- How we build models
- How we assimilate data

DISCOVER WHETHER NATURE IS PREDICTABLE

